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The Banach-Mazur functor and related functors

The purpose of this paper is to find the adjoint functors of some 
functors appearing in functional analysis.

If X  is a topological space, 3*(X ) will denote the space of bounded 
scalar-valued continuous functions on X  with the supremum norm; 
the scalar field is either the field R  of reals or the field C of complex 
numbers. If 99 : X  — > Y is a continuous map,

%{<p): & ( Y ) ------> tf(X)

will denote the induced linear operator defined as ^cp.g =  g op for g 
in ^(Y). If I 1 is a Banach space,

O*F =  {ÇeF*: ЩИ <  1 }
wiü denote the unit b'all of F* provided with the *weak topology. If feF , 
xFf  will denote the canonical image of /  in tf(0*F) defined as xFf. £ =  £(/) 
or £ in O * F. It is well known that the canonical map

xFi F  —  ̂ ^(O  F )‘
is a linear isometrical injection; it will be called the Banach-Mazur embed­
ding of F. It has the following property (announced in [11]):

For every compact space X  and every linear contraction a: F  — > C€(X) 
there is a unique continuous map p: X  — > О * F  such that the diagram

> F (0 * F )
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This theorem can be generalized if compact spaces are replaced by 
compact spaces with base points. If ж0 е1, let
(1 ) -  {/*  * ( * ) :  / М  =  0 };
if (p: X  — > Y  is a continuous map such that 9 9(x0) =  y0, let ^ 0 (99) denote 
the restriction of ^ (99) to ^(Y||y0).

P roposition  1. Let x0 be any point of a compact space X  and let
a: F  ----><£70 (Y||#0) be any linear contraction. Then there exists a unique
continuous map 9 9 : X ----> O* F  such that 9o(x0) =  0 and the diagram

>  <?0(O*F\\0)

is commutativ.
Proof .  If y: F — >G  is any linear contraction, let 

0 *y: 0 * G — ± 0 * F
denote the restriction of the conjugate map y*: G* — > F* to the unit 
ball O* G) it is continuous (with respect to *weak topologies). Let us 
consider the diagram

F
* F * -« ’o(0 *.F||0 )

*0<O-o>

Y T
^„(X\\œ0) - ^ ----------— ----------------- «’о(0*«’0(Х||ж„)||0)»o(ô)

where 8 : X  — > О*^о№1жо) is the canonical map which assigns to each 
point x in X  the functional K{g) — g{%) for g in ^ 0 (Х||ж0). It is well 
known that 8  is continuous; moreover, 8 Xq =  0 . We claim that the map 
99 =  О * a о 8 has the desired property.

It is clear that 9 9(ж0) =  0. In order to verify the commutativity of 
diagram (2 ) let us consider any /  in F. Then #<,9o.xFf  is a function 
on X  whose value at a point x of X  is

(^ 0 9 9 .xFf)x  =  #o(0 * a o 8 ). xFf .x  =  xFf . 0*а.Ьх 
=  XFf-iK о a) =  Sx(a/) =  af.x.
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Thus, <P-kf/ — af, i.e., o.xF =  a. In order to prove that y is the 
unique map satisfying this condition, let us suppose that у: X  -> 0 *F 
is a continuous map such that y {x0) =  0 and =  a. Let x eX
and feF . Then y(x)eO *F  and

ipx.f => xFf.y)X =  0y .x Ff)x  =  af.x =  (af) =  (O*a.Sx)f.
Therefore у =  0*aoô. This concludes the proof.

Defin itio n . The Banach-Mazur functor fé’O* : Вапг ->■  Bcf is the 
composite of the two functors
(3 ) Banx --Z Comp and C o m p B c f ,
where Banx denotes the category of Banach spaces and linear contrac­
tions, Comp denotes the category of compact spaces and continuous maps, 
Bcf denotes the category of spaces of the type 9f[X) and operators of 
the type &(y).

In other words, the Banach-Mazur functor assigns to each Banach 
space F  the corresponding space ^ (O * F) and to each linear contraction 
a: F  -> 6 r the induced map ^(0*a) from ^(O *F) to ^(0*0). It is clear 
that each of the functors (3) is contra variant ; consequently, the Banach- 
Mazur functor is covariant. Moreover, for each linear contraction a : F  ->G, 
*€ (O* a) is the unique Bcf-morphism from ^(O * F) to ^ ( o *G) such that 
the diagram

F ------------------------->*f(0 *F)
1

I
I

a , ;
t

v ' i
G ----------------------------------- ►«’ (0 *0 )

xa

is commutative. Therefore the Banach-Mazur functor is a left adjoint 
([5], p. 80; [13], 1 2 .1 .1 ) of the forgetful functor □ :  Bcf -> Banj and the 
Banach-Mazur embedding yields the corresponding canonical natural 
transformation.

We shall now deal with the 1 0  categories and 34 functors exhibited 
below (Fig. 1 ). Let us explain the notation and terminology. Ens denotes 
the category of sets and (all) maps; Compconv denotes the category 
of compact convex sets (subsets of locally convex Hausdorff spaces) 
and continuous affine maps (affine =  preserving convex combinations); 
Comp# denotes the category of compact spaces with base points and 
base-point-preserving continuous maps; Compsaks denotes the sub­
category of Compconv consisting of compact Saks spaces and center­
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preserving continuons affine maps (by a compact Saks space we mean 
a set of the form

К  =  {Ъ*В: P I K 1 } ,
where (В, || ||) is a Banach space provided with a coarser locally convex 
Hausdorff topology r such that (K , r) is compact, cf., e.g., [7], [15]).

An object of Bf means the space loo(S) of all bounded scalar-valued 
functions on a set $ ; a Bf-morphism from Zoo($) to Z^T) is a map of the 
form Zoo(99), where <p: T -+ S is any map and loo<p-f =  fo<p for /  in loo{S).

too
Ens ..:.............  •... *  Bf

Jr

XIqq □ □ I00Z

T V

Comp  ̂ — > Bcf
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A non-zero object of Bcfd is a closed snbspace F  of a space X ) satis­
fying the condition lx*F , where l x  denotes the constant function 1 
on X ; a zero object is {0}. A Bcfd-morphism from a subspace F  of X )
to a non-zero subspace G of # ( Y) is a linear operator Ф: F  -> G such that 
||Ф|| =  1 and Ф(1Х) =  1y ', & Bcfd-morphism from F  to {0 } is the zero 
map; there is no Bcfd-morphism from {0 } to F  ^  {°}- 

. An object of Bcf0 means a space of the form

V0(X\\A) =  {fe V(X):  xeA =>/(<*) =  0},

where A is a subset of X ; if B c  Y, then a Bcf0-morphism from tf0( Y||B) 
to %0{Х\\А) is a map of the form &0{y), where у: X  -> Y  is a continuous 
map such that у {A) а В and <€0{y) is the restriction of Ф(<р) to <&0{Т\\В). 
It is clear that any space ^ (X ) and any space ^{Х\\х0) are objects of Bcf0.

Let us note that each of 10 categories in Fig. 1 is complete in the 
sense of Freyd [5] provided that the empty compact space is regarded 
as an object in Comp, the empty set is regarded as an object of Compconv, 
and the one-point compact Saks space (the unit ball of a zero Banach 
space) is regarded as an object of Compsaks; with these conventions, 
loo{0), ^ {0 ), &о(0\\0), and j/ ( 0 ) are spaces consisting of the single 
element 0  only.

The 10 functors drawn horizontally in Fig. 1 are contravariant. 
There are 5 functors directed to the right: Z ,̂ ^ 0, л/, j/ 0. The functors
Zoo, ^  and Sf0 were defined above. If К  is a compact convex set, stf{K) 
is the subspace of # (К ) consisting of continuous affine functions on K. 
If К  is a compact convex set with a distinguished point x0, then ssCQ{K )  
is the set of all /  in sé{K) such that f {x 0) =  0  ; in particular, if К  is a compact 
Saks space, the distinguished point is the center of K .  If К  and K ’ are 
compact convex sets and у: К  - > K '  is a continuous affine map, then 
s#(y) is the map from to stf(K) defined as s/y.h =  hoy for h
in if К  and K' are compact Saks spaces and у: К  -> К' is a con­
tinuous affine map such that 9 9(0 ) =  0 , then v /0 (y) is the restriction 
of s#{y) to j/ 0 (X').

There are 5 contravariant functors directed to the left in Fig. 1: 
3C\ S£, 9СУ,Ж , О*- If F  is an object of Bcf or Bcf0, 3C{F) denotes the set 
of non-zero multiplicative linear functionals on F  with the *weak topology. 
The Gelfand functor SC assigns to each Bcf-morphism Ф: F  -> G the map

СС{Ф)\ &{G) -> SC{F)

defined as the restriction of Ф* to SC(G). If F  is an object of Bcf0, SCY{F) 
will denote the set SC (F) augmented with the zero functional, which is the 
base point of &Y{F). Thus, SCY(F) is a one-point compactification of 9C{F)-, 
if F  has a unit, then SC(F) is compact and SCV{F) is homeomorphic to the 
space SCÇF)-\-1 obtained by adjoining an isolated point to 9C{F). If

12 — Prace matematyczne XIV
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Ф: F  -> G is a Bcf „-morphism, then ЗСУ{Ф) is the restriction of Ф* to 
&Y(G). If F  is a space of the type loo(S), then ЗГ(F) will denote the set 
of isolated points of 2£(F)) ЗГ (Ф) is defined in an analogous way.

If F  is a Bcfd-object, F  <= V(X)  and lx*F , then X'(F) is the set of 
states

j r { F )  =  { U & i  Hill = W x )  = 1 }

which is convex and *weakly compact (cf. [2], [13], [16]); if Ф: F  -> G 
is a Bcfd-morphism, then УТ{Ф) is the restriction of Ф* to Jf(G). The 
symbol O* will now denote a modification of the first of functors (3), 
namely 0 * F  is the unit ball in F* regarded as a Saks space (compact 
in the *weak topology).

The non-horizontal functors in Fig. 1  are covariant. There are 6  

forgetful functors directed upwards : the forgetful functor □  : Comp -» Ens 
(the underlying-set functor), the functor □ :  Compe Comp “ forgetting” 
the base points, the functor □ :  Compsaks ->• Comp, assigning to each 
compact Saks space its underlying compact space with the base point 0 , 
etc. They are faithful and are not one-to-one on objects.

There are 6  embedding functors directed downwards: the functor 
□  : Bf Bcf assigning to each space Zoo($) the space V(8),  S being re­
garded as discrete ; the inclusion functor □  : Bcf -> Bcf 0, etc.

The remaining 1 2  functofls are: 6  functors directed downwards:
(4) п » ,  o * v ,  &yv ,  о o * v 0

and 6  functors directed upwards:
(5) i0л ,  v jt , v o* , v æ Y, s#o*, v 0o*',
actually, these functors should be written as ^ o D o ^ ,  J f o O o ^ , . . .  
. .. ,  iooODo^, . . . ,  but we feel free to simplify the notation by omitting 
the forgetful functors here.

Some of these functors are well known: &10о(8) is the Stone-Cech 
compactification of 8 provided with the discrete topology; J f^ (X ) is 
a Choquet simplex whose extreme boundary is homeomorphic to X  ; 9̂Cy 
is naturally equivalent to the functor of adding a unit to the Banach 
algebra V0(XjjA).

The terms : left adjoint, right adjoint, adjoint on the left and adjoint 
on the right will be understood in the sense of Freyd [5].

P r o p o s it io n  2 . The horizontal functors in Fig. 1 are pairwise adjoint 
on the left and on the right simultaneously. Moreover, each of the compositions 
looiT', SC'loo, V3C, Э£Ч>, . . . i s  naturally equivalent to the corresponding identity 
functor.

ï l i is proposition, establishing quasi-dualities between the categories 
Ens and Bf, Comp and Bcf, Compe and Bcf0, Compconv and Bcfd, Comp­
saks and Ban1? is well known (cf. [1 ], [2 ], [4], [6 ], [8 ], [9], [ 1 0 ], [13], [14]).
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T h e o r e m . Each of the functors (4) and each of the functors (5) is a left 
adjoint of the corresponding functor in Fig. 1  marked with □ .

Proof.  Tloo is a left adjoint of □ :  Comp -^Ens; it is a well-known 
property of the Stone-Cech compactification.

XT? is a left adjoint of □ :  Compconv -> Comp ; see [2 ], [3], [9],
[10], [13].

$?VT? is a left adjoint of □ :  Comp. Comp because it is naturally 
equivalent to the functor ? + 1  (adding the isolated base point to the space, 
cf. [11], [13]).

The proofs of left adjointness of O*^, O*^o and О are analogous 
to proofs of some properties of the Stone-Cech functor [3 or the simplex 
functor X  =  XT? (cf. [13]); therefore we leave them to the reader.

The left adjointness of T'O* and ^ 0 O* have been established above; 
a proof of left adjointness of О * can be found in [10], p. 289; a proof
of left adjointness of <€X can be found in [13], 23.3.4. A similar kind of 
technique is used in the proofs of left adjointness of T?3?Y and lœ3?', there­
fore these proofs are omitted as well.

The diagram in Fig. 1 is partially commutative in the following sense :
P r o p o s it io n  3 . For each of the squares

Ens--------------------Bf Comp-----------------Bcf

C om p --------------------- Bcf

C om p---------------------Bcf

Com pconv---------- Bcfd

Com pconv---------- Bcfd

Compsaks----------Banx

Comp-----------------Bcf

Com p.--------------Bcf0

Com p.--------------Bcf0

Compsaks ----------Banj Compsaks---------— Banx

and for each of the following choices of directions of arrows:

1  1

Î

(a) (b) (c) (d)
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the compositions of the corresponding functors in Fig. 1  are naturally 
equivalent.

Proof.  Note, e.g., that □  о Ж о □  о lœ{8) =  Ф8. If directions of
arrows are chosen as in (a), then we have a diagram of the form

%1

r l

■ ......—

/t-гоОоГ i □

v
% <-

Г2 Y
^ « 2

л2

and we are to prove that Q o Гх is naturally equivalent to /^ о  Л2 о П о /\ ;  
since Г2оЛ2 is naturally equivalent to the identity functor , the com­
positions of these functors with are naturally equivalent as well.
In the cases (Ь), (c) and (d) the argument is similar.

Let us also note that the Banach-Mazur functor is naturally equiv­
alent to each of the compositions

ôO* stfo*
B anx----------► Bcf о---------- *■ Bcf and Banx------------ » Bcf d -----------> B c f.

Similarly, the functor 0 * r€: Comp - 
to each of the compositions

SCyV
Comp---------> Comp

and

Compsaks is naturally equivalent

0*Vo
— — > Compsaks

jre o*s/
C om p-----------► Compconv ----------- > Compsaks.

From Proposition 3 it follows that for each of the above mentioned 
6  squares in Fig. 1 we get 6  diagonal contra variant functors (each of 
them is defined, up to natural equivalence, by one of two possible com­
positions). If we paste the upper square (Ens, Bf, Comp, Bcf) with one 
of the three adjacent squares, we get three more squares. Thus, in Fig. 1, 
we actually have 9 squares and (up to natural equivalence) 36 diagonal 
contravariant functors, e.g., the functors

(6 ) Comp -^ВаПх and ^ 0: Comp# -э-Вап!.

The diagram in Fig. 1 may be regarded as a scheme showing 5 mutually 
dual theories in functional analysis and the canonical functors establishing 
some relations between those theories; from this point of view one may
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discuss, e.g., whether are one theory more general than the other. One 
may add further categories and functors to that diagram, e.g. one may 
consider the quasi-dual pair: compact O-dimensional spaces and Boolean 
algebras (or those algebras &(X)  in which the idempotents are linearly 
dense).

For each of 24 covariant functors in Fig. 1 one may ask whether they 
preserve equalizers ( =  difference kernels), coequalizers, products, co­
products ( =  sums), inverse ( =  projective)- limits, direct ( =  inductive) 
limits and so on (cf. [11]). The positive answer to one half of those 
questions follows from Freyd’s Adjoint Functor Theorem ([5], p. 81).

It is clear that each of the 10 contravariant horizontal functors 
in Fig. 1 sends equalizers to coequalizers, coequalizers to equalizers, 
products to coproducts, etc. Similar questions of preservation properties 
may be asked for each of the 36 contravariant functors mentioned after 
Proposition 3. Most of the answers to these questions either follow from 
the Adjoint Functor Theorem, or can be established directly. In some 
cases, however, the answers do not seem to be trivial and may be regarded 
as open. Let us mention that in [12] it is proved that the functors (6 ) 
send inverse limits (over upward filtering diagram schemes) to direct 
limits.
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