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On the dual semigroups of compact semigroups

Let 8 be a commutative compact semigroup (multiplication being
jointly continuous). By a semicharacter of 8 we mean a continuous homo-
morphism y of 8 into the complex unit dise, i.e., a complex-valued
continuous function y on 8 such that 1° |y(x)] < 1 for all eS8, 2° y(z,2,)

= y(a,)y(2,) for x,, x,€8. The set S of all semicharacters of § is a com-
mutative semigroup under the ordinary pointwise product y,7.(x)
= 9,(@)y,(®). The unit semicharacter y*(x) =1 and the zero semicha-

racter y°(2) = 0 are the identity and the zero of S’, respectively. They

are called the trivial semicharacters. The semigroup 8§ with the uniform
topology, i.e., the smallest topology in which all the sets

U(y',e) = {yeS’: |y () — 9" (2)] < ¢ for all xS}

are open, is a topological semigroup and is called the dual semigroup
of 8. If 8 has zero element 0 and identity e, then the semicharacters y°
and ' are isolated points in 8. Indeed,

U8 = {reS: @) <12, 08} = )
since ¥ # 7° implies y(e) = 1, and

U Y = {red: y(@—11 <12, 28} = ('}
since y s ¢! implies y(0) = 0.
In this paper we present some sufficient conditions for S to be locally
compact.

THEOREM 1. Let 8 be a compact commutative semigroup with identity e
and zero 0, such that

(i) e has a basis of open connected neighborhoods,

(ii) for every open set U c 8 and every xe8,  # 0, the set Ux is also
open.

Then the dual semigroup 8 is locally compact.
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Proof. Let y’eé, v #4° v # 9. We shall prove that the set
U, = U(y', }) is relatively compact in . Since all semicharacters are
uniformly bounded and S is compact, it is sufficient to prove that U, is
an equicontinuous set, i.e.,

(1) V5>0 \ aN(x’) Vyer VweN(x') ly (@) —y(@')| < e,

where N (') denotes an open neighborhood of ' (see, e.g., [1]). In order
to prove (1) we shall distinguish three cases: (I) ' =0, (II) o' =,
(ITT) 2" £ 0, &' #e. :

(I) " = 0. Let M be an open neighborhood of 0 in 8 such that
¥ (#)] < 1/4 for every xzeM. For every yeU, and every zeS we have
ly (@) — ' (x)] < 1/2; therefore if x<M, then |y(x)| < 1/2+ |y (2)] < 3/4.

Let ¢ > 0 and let k& be a natural number such that (3/4)k < ¢. Denote
N=M'=M-M-...-M. In virtue of (ii) N is an open neighborheod
of 0. If e N, then « is of the form x, @, ... @ with @;eM, i = 1,2, ..., k,
and for every ye U, we have

@)=y ey (@) < (BM4)° <e;
this means that (1) is satisfied.
(II) " = ¢. The proof consists of three steps.

(a) Write M = {|y|: yeU,}. Here |y| denotes the semicharacter
ly{x)]. We claim that the set M is equicontinuous at the point e. Suppose
that this is not true, i.e.,

3eo>l) VN(C) B]INEUO HEAVEN(G) 1— ]VN(xN)l 2 €o

Choose an integer k sueh that (1—e,)* < 1/4. Let N be a neighbor-
hood of ¢ such that 1—|y’(m’°)l < 1/4 for xeN, where #*. denotes the
gsemigroup power - ...-w. Consequently,

lyn (@) — 1y (@8)]] = 1— |lyw (@R) | —(1— 1y’ (@R)]) = 1 — (1— &) —1/4 > 1/2.

On the other hand, yye U, and ||yN(w )=y (@)l < lywl@)—y (@) < 1/2
for all <8, a contradiction.

(b) Denote A4 = {Argy: yeU,}. The set A is equicontinuous at e.
Indeed, suppose the contrary ; then there exists an ¢, such that 0 < g < /2
and

VN(e) ayNer astN(e) |Arg 7 (@)l > &.

Choose ¢, and an integer k such that ¢, > ¢, and =/2 < ke, < ke; < =.
By (a) and by the continuity of ¢’ there exists an ¥ = N (¢) such that

ly{@)] > 1/0/8 and |Argy’(x)| < n/6k for zeN and yeU,. By (i) we may
assume that N is connected. Then, since Argyy(e) = 0, there exists an
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yneN such that g < |Argyn(yn)| < &, Thus
[Arg y, (YW = [ATg Yy (Y| = klArgy (3, )| > key > mo[2.
On the other hand, from the inequality

ly(@)—y (@)1 = (Iy @] — Iy’ @I+ 2y ()| [y’ («)|{L — cos(Arg y (x) —
—Argy’ (2))) < 1/4

(ye Uy, xe8), we obtain

by () [+ 1y () [ —1/4
21y ()l (ym)®

|Argy (y&) —Argy’ (y)| < arccos < w/3.

Hence |Argy(y%)| < nj3+ |Argy' (15)] < =/3+=/6 = =/2, a contra-
diction.

(¢) The set U is equicontinuous at e. Let ¢ > 0. In virtue of (a) and (b)
there exist open neighborhoods N, (¢) and N, (e) such that (|y(2)|—1) < ¢/2
for zweN,(e) and 1—cosArgy(x) < ef4 for zeN,(¢). Consequently for
xeN,(e) ~ Ny(e) and yeU, we have:

[y (@) 1P < (I (#)] —1f +2(1—cos Argy (@) < e.

(III) 2’ €8, &' # 0, ' # e. Let ¢ > 0. By part (IT) there exists a neigh-
borhood W of e such that |y(z)—1| < & for all ye U, and all zeW. Let
N = 2'W. By (i) N is an open neighborhood of #'. If x<N, then ¢ = 2'y,
with yzeW and |y(@)—y(@')] = [y (@) |y (¥=) =1 < [y (¥2) —1] < e.

Thus, U, is equicontinuous at #'. This concludes the proof of Theorem 1.

Now, let (8;)ez be a family of commutative compact semigroups
with identities ¢,. The product P = [[ 8, is the Cartesian product of

geX
the spaces S, with the Tychonoff topology and with the componentwise

multiplication: if #' = (z,), 2"’ = (w,), then o'z = (x,x,). It is eclear

that P is a commutative compact semigroup with identity e = (e,).
THEOREM 2. If each S’G s locally compact, then P is also locally compact.
The proof is founded on the following essentially known lemma:

LevwmA. A complex-valued function y on P is a non-trivial semicharac-
ter if and only if there exisl a finile subset of indices {oy, ..., 0} = 2 and

non-trivial semicharacters ys ..., Vo, (Vo eé'%.) such that
e }

(2) y(x) = .”17%'(‘”%) for every x = (x,) in P.
P

Moreover, this representation is unique.
Proof. It is obvious that (2) is a non-trivial semicharacter on P.
Conversely, let yeP, » non-trivial. Let &,: 8, — P be the canonical injection
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defined as &,(2,) = (¥.);ez, Where y, = ¢, for v +4 ¢ and y, = 2,. Denote
Yo = Yo&,. It is clear that y,,eS*,,. Let y. denote the unit semicharacter
of 8,. We claim that the set Z, = {seX: y, # y;} is finite. Let V be a neigh-
borhood of a point = (x,) in P. It follows from the definition of
Tychonoff topology that for almost all o the projection of ¥ on S, is
equal to 8§,. If 2, were infinite, then there would exist an index ¢, such
that ys, 7 s, and &(s)eV for all seS,. Hence y,(s) = y(&,(s))ey(V)
for all se8,, and y(V) would contain the non-trivial subsemigroup y,,(S,,)
(containing 1 since §,, has identity ¢) of the complex unit dise; this would
contradict the continuity of the semicharacter y. It is clear that y(x)

= H Vo (wa)'

oeXp
Let us now suppose that some non-trivial semicharacter y can be
written as

(3) y(x) = [Jl Vo, (%)  and  y(x) = I Be; (@),

where y,,ieS'ui, ﬁ,je;@,j are non-trivial. If the set {oy, ..., 0,} were different
from {vy, ..., 71}, €.8., 05¢{71, ..., T}, then substituting », = e, for o # o;
in (3) we would have y,,(#,) =1, i.e,, y,, = 5. Thus {oy,..., 05} =
= {71, ..., }. I we again substitute x, = ¢, for o % o;, we get y,,(2,,)
= y(®) = B,,(2;;); hence y, = f,,.

Proof of Theorem 2. Since P has identity, the semicharacter »°

is an isolated point in P.P may lack zero, but if v 5= 9! and for some
ly(z)] <1, then we can find an integer %k such that |L—y(2")] = |1—
—(y(w))kl > 1/2. If, on the other hand, |y(x)] = 1 for all », then y(P)
is a non-trivial subgroup of the unit circle; this implies the existence of
an @ such that |1—y(x)| >1/2. Thus U(yY 1/2) = {p1} and »! is also
an isolated point in p.

Let z’ be a non-trivial semicharacter of P. By the Lemma we have

Y (@) = |1 ¥4, (@), Where Yoy By vs, mon-trivial. Let 0<e<1. If
i=

1
yeU(y'y €) and y (%) = Hl 7:;(#;), then the sets {0y, ..., ox} and {7y, ..., 7}
j=

are identical. Indeed, if o; ¢{7y, ..., 7;}, then, by non-triviality of yc
we would choose (likewise as in the previous part of the proof) an wu eS%
such that for @ = (%), where z, = ¢, if ¢ +# g;; and w,, = wo ! we
would have

14 k .
Iy (@)= @) = | [T7 ()= [T7(00)] = 1=l (@) > e.
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~ Let us put again z = (»,), where z, = ¢, for all ¢ except some o;,
1<e<k and =, arbitrary. We have then [y(f:)——y’(w)l = |V (To;) —
— Vo, (#5)] < & which means that y,eUl(ys,,¢) = 8,,. Since the sets of
the form U (y,,, ) constitute a basis of neighborhoods in S, , then, chang-
ing possibly e, we may assume that U(?’;w g) is relatively compagﬁ in
8o, 8o the image of U(y’, &) under the natural projection onto S, is
also relatively compaect. Therefore U(y', &) is relatively compact in P.
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