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A simplified characterization of an open m-arrangement

The axioms which define an m-arrangement are given in [1], 3.1-3.9,
and the concept of an open m-arrangement is discussed in [1], chapter IV.
The purpose of this paper is to give a substantially simpler characteri-
zation of an open m-arrangement than is given in [1]. Specifically, we
shall prove

_ THEOREM. Let X be a topological space with geometry G of length
m—1 > 0. Suppose
(i) PO = {{o}|weX]. .
(ii) If fis a (k—1)-flat and g is a k-flat with f < g, then f disconnects g
into two convex components which are open in g, 1 <k < m.
(iii) Hach 1-flat is connected.

(iv) If f is an (m—1)-flat, then we call the components of X —f half-
spaces of X. The collecton of half-spaces of X forms a subbasis for the
topology of X.

Then X and G form an open m-arrangement. Moreover, if X is a space
with geometry G such that X and G form an open m-arrangement, then
X and @G satisfy properties (i)-(iv).

Proof. We first prove that if a space X together with geometry G
on X of length m— 1 satisfies (i)-(iv), then X and ¢ form an open m-arran-
gement. (i) is 3.1. Since every point of X is a cut point of any 1-flat which
contains it, if X and ¢ do form an m-arrangement, then this m-arrange-
ment must be open. (iii) is 3.3. The proof that the other axioms in the
definition of an m-arrangement are satisfied is broken down into propo-
sitions and lemmas each of which refers to the situation cited in the
theorem.

ProprosiTiON 1. Hach flat is closed.

Proof. From (ii), any (m—1)-flat is closed. Any i-flat, 0 <+ < m—2,
is the intersection of finitely many (m —1)-flats and hence is closed. Of
course X and @ are also closed.
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Let x and y be distinet points of X. Then f,(z, y)—{#} = 4, v By,
where A, and B, are disjoint, non—empty, connected subsets of f,(x, )
which are open in f;(x,y). Similarly, f1 —{y} = 4, v B,. Suppose
yed, and xzeAd, Define |zy| = {2, y} v (4z ~ A s) = Cl4, ~ Cl4,. Then
ley| <= fi(2, y).

PROPOSITION 2. |xy| is closed and connected.

Proof. |zy| is closed since it is the intersection of two closed sets.
Suppose B, ~ B, # 0. Then B, o ClB, is connected, and hence must
be a subset of B,. This contradicts the assumption that yeA,. Therefore
B, ~ B, = @. Suppose |xy! is not eonnected. Then jxy| = F o F’, where ¥
and B’ are closed, disjoint, non-empty sets. If {z,y} < F, then f,(x, y)
= (C1B, v F) v (C1B, v F"), hence is not connected. If z<F and yelF",
then f,(#, y) = (C1B, v F) v (C1B, u F'), hence is also disconnected
a contradietion in either case. Therefore |xy| is connected.

PROPOSITION 3. fi(x,y) = B; v |zy| v By; moreover, B, |zy|, and
By are pairwise disjoint.

Proof. Suppose zef, (%, y)— (B, v B,). Sinee 2¢B,, z¢ A, v {r}, and
since 2¢ By, ze A, v {y}. Therefore z¢|vy|. From the proof of proposition 2,
we have By ~ B, = @. 1t follows easily from the definition of |zy| that
eyl ~ By =0 = |wy|nB

COROLLARY 1. = (loy]|—{x}) o B, and A, = (lvy|—{y}) v
Proof. We show tha,t Ay = (loy|— {}) v By; the proof for Ay
analogous. From proposition 3 we have f (r,y)— {2} = A, B,

= ((lzy]— {«}) v By} v B,. Since A, ~ B, =0 = (( lwy[ {z}) © B,) ~ By,
it follows that A, = (ley|—{x}) v B,.

COROLLARY 2. |xy| s irreducibly connected between x and y.

Proof. If te|zy|—{x,y} and |vy|— {t} is connected, then f;(z,y)—
—{t} = OB, v (lxy|—{t}) v C1B, is connected, contradicting (ii).

Let f be any 1-flat and xz,ef. We define an ordering < on f as follows:
f—{w) = A o B, where A and B are disjoint connected subsets of f.
2, <y for any yed. z <y for any zeB and y<ClA. For any wef— {x,},
let ¢, be the component of f— {w} which contains x, and D,, be the other
component of f— {w}. For 2,2’ eB,z2 <=z if 2¢C,. For y,y' <A, y <y’
if ¥ eD,.

PROPOSITION 4. < is a total ordering on f.

Proof. Let # and y be distinet points of f and suppose z <« y; we
show that y < . Since z <« ¥, it is impossible to have xeB and yeA.
If zeA and yeB, then y < x; therefore we have only to consider the
cases when x and y are either both in A or both in B. Suppose « and ¥y
are both in A4; the case when » and y are both in B is analogous. Since
z €y, y¢D,, hence we must show weD,. Now if xeC,, then from Prop-



Open m-arrangement 185

osition 3, Corollary 1, we have C, = (lay|—{y}) v D,. However, since
2, ¢ Dy, it follows that x,¢|ry| and hence is a cut point of |ry| by Propo-
sition 3, Corollary 2. This implies then that # and ¥ could not both be
in B, a contradiction. Therefore xeD,, hence y < z. Suppose z < y and
y < @ with both # and y in 4. Then yeD, and wxeD,, hence f,(x,y)
= Cp v oyl v Oy with Cp ~ Cy=0. But x,¢0, ~ C,, a contradiction.
Thus if # and y are both in A, it is impossible to have # < y and y < @
simultaneously ; moreover, it is easily seen that if # < y or y < , © # ¥.
The same conclusions can be drawn in an analogous manner if 2 and y
are both in B.

It remains to be shown that < is transitive. Suppose # < y and y < 2.
The only cases of consequence are when x, y and 2z are either all in 4, or
all in B. Assume z, y and # are all in A4 ;the proof for B is analogous. Since
% <y, yeD, and y < 2 imply z¢D,. Since ye.D,, x<C,; for if xeD,, then
this would mean that ¢ <y and y < x, a contradietion. Then by Prop-
osition 3, Corollary 1, f = C, v |vy| v D, with C, ~ D, = 0. If zeD,,
then z¢(C,, hence zeD,; thus z < z.

PROPOSITION 5. f with the ordering as described above has the order
topology.

Proof. If x¢f, it is easily verified that if xeB, then 0, = {w|z < w}.
If ¥ =, then 4 = {w|x, <w}, and if wed, then C, = {wjw < x}.
D, ean be characterized in an analogous manner by means of the ordering.
This leads at once to |zy|—{z,y} = {wlz < w < y} (assuming z < y),
hence |ry|— {x, ¥} is open in both the induced and order topologies on f.
On the other hand, because of (iv), the ecollection of such subsets of f
forms a basis for the topology on f.

PROPOSITION 6. A subset W of X is convex if and only if given any
two points x and y of W, |ovy| < W.

Proof. Suppose |vy| « W for any x,y<W; let f be any 1-flat and
w,zef ~ W. Then |wz| «c f~ W and |wz| is connected, hence f~ W
is connected. Therefore W is convex. On the other hand, if 2,y W and
ley| & W, then f,(x,y) ~ W is not connected, hence W could not be
convex, ’

COROLLARY. The intersection of any family of convex subsets of X is
convew.

Therefore because of Proposition 1, G is a topological geometry on X
X (3.2).

ProrosrTioN 7. X s locally convex (3.4).

Proof. Proposition 7 follows at once from Proposition 6, Corollary,
and (iv).

ProPOSITION 8. If 2,y and z are points of a 1-flat f, then |wy| w |yz|
= |wyl, lyz], or |ue|.
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(Once it has been established in Proposition 10 above that |xy| = xy,
this proposition becomes 3.5.)

Proof. Proposition 8 follows from the total ordering of f together
with the fact that if # <y, then |rvy| = {w|z <w <y}

Let S8 = {x,,..., zx} be a linearly independent subset of X. Set
8; = 8 —{x;}. By (il), fx_1(8;) disconnects f(S) into convex components A4;
and B;. We shall assume x;¢A4;.

PRrROPOSITION 9. a) fi_1(8;) is a minimal disconnecting subset of fi(S)
b) Frd; = FrB; = fi._1(8:), hence Cld; = 4, o fr_1(8;).
c) Cl4; is convex.

Proof. a) Suppose wed;, zeB; and yefr_,(S;). Then |wy| v |yzl
is connected, hence f;(8S)— (fk_l(S@-)——{y}) is connected. Therefore fr_,(S;)
is a minimal disconnecting subset of f(8).

b) Let wefr_1(8;). If wé¢FrAd;, then some neighborhood U of w either
does not meet A;, or does not meet B;. Suppose U does not meet 4,. Choose
zeB;. Then f,(w,2) ~ A; # O, or B; would not be convex. Then f,(w, 2)

= ((fv U) fr\ By)) v (f ~ Ay), hence f(w,z) is mnot connected,

a contradletlon Each neighborhood of w can thus be shown to meet

both A; and B;. Since A; and B; are open, fe_1(8;) = FrA; = FrB;.

¢) Suppose x, yeClA;. If &, yefi_,(8;), then |zy| < fi(2, ¥) < fi_1(S;)

If x,yed; then |zy| < A; since A; is convex (Proposition 6). Suppose

Tefr_1(8;) and yed;. If |xy| ¢ Cl4;, then there is welwy| ~ B;. But then

lwyl ~ fr_1(8;) # @; this implies that |ry| intersects fr_;(8;) in two dis-

tinet points (since fi_;(8;) would disconnect |xy|) and hence |2y| < fi_1(8:),

a contradiction. Therefore in all cases, |vy| = Cl4;, hence by Proposi-
tion 6, Cl4; is convex.

We continue to let § = {x,, ..., 2x} be a linearly independent subset
of X and 8; = 8—{x;}; A~ and B; will be as previously defined. Let
Y= ﬂClA Set I(Y) = ﬂAl,E’Y fe_1(8;)) ~ Y,and B(Y UEY

i=0

LemMa 1. I(Y) = Y—B(Y).

Proof. Since Y is the intersection of closed sets, C1Y = Y. From
Proposition 9, b), we have B(Y) « FrY. But I(Y) is an open subset
of Y, hence I(Y) = Y°, where Y’, denotes the topological interior of Y.
Thus I(Y) = Y— B(Y) follows from the equality Y’ = Cl1Y—FrY.

PROPOSITION 10. a) C(8) =
b) ¥ = Ufzyl yeB'Y}, 0 <i <k

Proof. We first prove a) and b) for k=1 and t =2. If kt =1,
then Y = |w,,|, which is irreducibly connected between x, and x,. It

follows then that |z,2,| = C({%, #,}) = m—o;l b) is trivially true for k¥ = 1.
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Suppose k = 2. For any k, C(8) = Y since Y is a convex set (since ¥
is the intersection of convex sets) which contains 8. Suppose we Y —C(8).
Since f,(2°, w) disconneets fy(S), fi(@,w) ~ B°Y #©. We prove this
last statement as follows:

Fig. 1

B'Y = fi(#1, ) ~ Y = fi(@1, #:) ~ (ClLA; ~ Cl4,) (sgce J1(@y, @)
< Cl4,). From this it follows easily that E°Y = |»,%,] = @,2,. From the
fact that f,(x,, x,) disconnects f,(S), it can be shown that f,(x,, x;) ~

~ (Cl4, ~ Cl4,) = »,2, disconnects Cl4; ~ Cl4,. For if xx, did not
disconnect Cl4, ~ Cl4,, then it follows that f,(x,, #,) would not discon-

nect f,(8). The components of (Cld; ~ Cl4d,)—ax,x, are Y—x,%, and
By ~ Cl4, ~ Cl4,. Both components are in fact convex.
Let h be that component of f;(#,,w) which contains w. Then

h = fi (@, w) ~ (ClAd; ~ Cld,). If h ~ 2w, =0, then -w1w2 does mnot
disconnect h; hence h « Y —z,@,. But it can be shown that A disconnects
Cl4, ~ Cl4, and & cannot disconnect ClA, ~ Cl4, if h < Y. Therefore

we have h ~ @,2, = f(,, W) ~ T, 05 # B. Suppose wuef,(x,, w) ~ E°Y.
Then wez,u. On the other hand, E°Y = @@, = F°C(S). Therefore
wezyu = 0(8), a contradiction. Similarly, if weY, then there is weE" Y
= F°((8) such that wew,u; given any ueE° Y, zyu = ¥ since Y is convex,
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Thus ¥ = | {zmu| ueF°C(S) = E°Y}. Similarly, ¥ = (J {mu|ueE Y},
1 =1,2.

We now assume that Proposition 10 has been proved for 1 <j < k—1.
In order to complete the proof of Proposition 10, several lemmas will
be used. These all refer to the situation described in Proposition 10 and
its preceding remarks.

LEMMA 2. B'Y = F'C(8) = 0(8,), 0 <i <k

Proof. Lemma 2 is trivially true for k¥ = 1. If f is any k-flat, then
the subspaee f with geometry G; (of length k—1) satisfies (i)-(iv). Now
8; < fu_1(8:), hence by the preceding observation, the definition of B'Y,
and the mductlon assumption, E'Y = O(8;) = F'C(8).

LeMMA 3. Suppose wel(Y) and f is any (k— 1)-flat which contains w.
Then f disconnects Y.

Proof. f disconneets f(8) into convex components 4 and B. If f
does not disconnect Y, then Y —f < 4, or Y —f < Bj; assume the former.
Since X —B(Y) =I1I(Y) o (X—Y) and X— Y is non-empty (since each
B; is non- empty) and open, B(Y) disconnects X. Ohoose zeB. Then zw ~ f

= {w}. But 2w ~ B(Y) # @ since B(Y) disconnects 2w. Therefore weB(Y),
a contradiction.

LEMMA 4. If [~ IntF'C(S) % @, then f~ fi 1 (8:) is & (k—2)-fla?
which disconnects B'Y = F'C(8).

Proof. fy(8)—f=A4AoB as uwsual. Then Y—f=(4~Y)v
w (B~ Y). If B'Y—f is connected, we may suppose it to be a subset
of A. Let ¢ be a (k—2)-flat in fr_,(8;) with f~ fi_:1(8;) = ¢g. Choose
zelg—f) ~ B Y; this intersection is non-empty since g disconnects
E'Y by Lemma 3 while f does not. Choose ueB ~ Y Then uz ~ ¢ = {z},
but uz ~ f # @ since f diseconneets uz. Therefore uz < g, a contradiction
since 2eB~ Y, but g~ Y c A4~ Y.

Since a (k—2)-flat is a minimal disconnecting subset of a (k—1)-
flat, f ~ fr_:1(8;) is a (k—2)-flat; and if a (k— 2)-flat disconnects By
= ((8;), it can be shown to be a minimal disconnecting subset.

LEMMA 5. Suppose fis a (k—1)-flat, F'(F°C(8)) = fand f ~ I(Y) # .
Then f ~ xyx, consists of exactly one point z and f~ Y = C({®,, @3, ..
ceny Tpy Z}).

Proof. The lemma has already been proved for k = 2. Assume it
is true for k—1 > 2. If f ~ x,7, # O, then it can be shown that f does
not disconnect Y, contradieting Lemma 3. Since_ar;v_1 ¢ f, the intersection
must consist of a single point 2. Because of the induction assumption,
Y~ f=0({xy 3, ..., 75, 2}) (cf. the proof of Lemma 2).
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Proof of Proposition 10 completed: It follows from Lemma 5 that
Y = U {0z, ...y @,y z})]zeﬁwl}. By the induction assumption b),
for any zemow;, C({zy, ..., 4, 2}) = U {2:0|0 e F*C ({@s, ..., ¥, 2}). We
already have E'Y = C(8;) = 0(8), 0<i<k Now EY = F(C(S8)
= U {F20({@s, ..., @k, 2})| 2 Bo,), hence ¥ = (J {zy0|ve B2 Y = F2C(8)}
< O(8). An analogous proof could be used to show ¥ = () {9_021;] veF'C(8)},

0 <9 < k. Therefore a) and b) hold for k¥ and the proof of Proposition
10 is complete.

Xo

X

TFig. 2

The following results follow immediately from what has been done
so far.

ProposiTION 11. a) FrY = B(Y) = BdC(8) (3.8).

b) If f is a 1-flat in fi(S) such that f ~ IntF* O(8) O, then f ~ IntC(8)
= f~I(Y) £ @. (For if not, then one component of fi,(8)—f would not
be convex.) (3.7).

¢) If fis a (k— 1)-flat contained in a k-flat f' and C(8)is a 2-simplex
in f' such that f intersects the interior of one face of C(8) in a single point,
then f intersects another face of C(S) also.

Using the results of [2] and ¢) in Proposition 11, we have that X and G
satisfy 3.1-3.9, hence X and @ form an m-arrangement.
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Suppose now that X and G form an open m-arrangement. Then (i)
is 3.1 and (iii) is 3.3. (ii) follows from 3.25, 4.1, and 4.4.4 of [1], while (iv)
follows from 4.6 and the following proposition.

ProrosITION 12. If 8 = {%, ..., 2n} 8 a Unearly independent
subset of X, let A; be that component of X — f(S— {w;}) which contains ;.
Then () 4; = IntC(8).

=0

Proof. If zeInt C(S), then 1t is easily shown that ;2 < 0(8)—fi(S
—{@;}) = 4;; thus IntC(8) < ﬂ A If yeﬂ A;—IntC(8S), then some

neighborhood V of y must lie entirely in ﬂ A;—IntC(8). For if not,
=0

then some net of points of Int (8) must converge to y. Then y ¢Cl(Int C(S))

= C(S). But then yBdC(S8). However, since any face F'C(8S) of O(8)

isin fu_1(S—{x}), v could not be in A4;. Therefore ﬂ A;— IntC(8) i

1=0

open as is IntC(S). Then ﬂ A; is not connected, contradicting the fact
=0

m m
that it is convex. Therefore () 4;— Int C(S) = @, hence () 4; = IntC(8).

=0 =0
This completes the proof of the main theorem.
The following examples illustrate the independence of (i)-(iv). It is
of course realized that (ii) is really several axioms. No attempt is made
here to fully analyze all its parts or the independence thereof.

Independence of (i). The usual spherical geometry on the 2-sphere,
i.e. the 0-flats being pairs of antipodal points and the 1-flats being great
circles.

Independence of (ii). Let X be the union of the # and y-axes in
the coordinate plane with the usual topology. Let G = {F~', F°}, where
F® = {{w}|x<X}. Then each weX disconnects X into at least two compo-
nents each of which is convex; moreover, the collection of these compo-
nents forms a subbasis for the topology on X. Of course (0, 0) disconnects X
into four components rather than two.

Let R* be the coordinate plane with the usunal geometry, but with
the coarsest topology which makes each line a closed set. Then each line
does not disconnect R*, but the collection of sets of the from R*— f, where f
is a line, forms a subbasis for the topology on R’

Independence of (iii). Let X = {1, 2, 3} with the discrete topology
and F° = {{w}|zcX]}. A

Independence of (iv). Let R be the set of real numbers with F°
= {{x}|weR}. Let a subbasis for a topology on R consist of the open inter-
vals together with {z|x is a rational number in (0, 1)}.



Open m-arrangement 191

References

[1] M. Gemignani, Topological geometries and a mew characterization of R™,
Notre Dame Journal of Formal Logic, Vol. VII, No. 1 (Jan., 1966), pp. 57-100.
[2] — On eliminating an unwanted axiom from the characterization of R™ by
means of topological geomeiries, ibidem, Vol. VII, No. 4 (Oct., 1966), pp. 365-366,



