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Steklov means in Orlicz spaces

The aim of this paper is to generalize some results of ¥. I. Har§iladze
concerning spaces L” of functions (see [4]) replacing spaces L” by Orlicz
spaces L*°.

1. We shall introduce convenient notations and give some general
remarks. Let ¢(%) be an even, continuous, convex non-negative function
vanishing only at 0, ¢ (u)/u — 0 as u — 0, p(u)/u — co as # — oo and let
@" (v) be the function complementary to ¢(u) in the sense of Young. We
denote by L%, the Orlicz space ([3]) of 2x-periodic measurable functions
such that

(1) fl, = sup| f f(@)g(@)da| < oo,

where the supremum is taken over all non-negative periodic measurable
27

functions g(») such that [ ¢*[g(2)]de <1
0

In the sequel we shall assume that the space Lfo“jm is reflexive.
W. Orlicz has shown that in order that the space L*® be reflexive it is
necessary and sufficient that the functions ¢(w) and ¢*(v) satisfy the
dy-condition for small » ([3]). We denote by wi(f,?), the modulus of
smoothness of order k¥ > 1 of the function f(z) in the space L*?:

@ olf ) = splaffl, = supHZ — 1 (8 s+ im)

-

and by Ey,(f), the best approximation of the function f(x) by trigonometric
polynomials of degree <= in the L*? sense:

(3) E.(f)y = int|f(x)—Tu(@)ll,,
where the infimum is taken over all trigonometric polynomials of degree
< n. Denote by fi(x) the Steklov means of order F,

ok h
. 1
(4) f’i(w)=%f E (-1 (f)f(w+it)dt, Falo) = o ff(w+t)dt.
~h =1 -h
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Thus

= 2(4)“‘(?)%_5 flotityat = 2(—1)"-1 (f) 7o,

and for f(x)eL*® we have
' k

(5) Ifi@) —F@ly < X (F) Uinl@—F(@l.

i=1

2. LEMMA 1. Let f(z,y) = 0 and let fﬂf y Y)l,dz < oo for almost

every x, where ||f(x, y)|, is the Orlicz norm of f(®,y) as a function of the
variable y, © being fived. Then ,

(6) | [ @, pasl, < [ 1@, )l
b
Proof. Let E denote an arbitrary set. We set g(y) = [ f(»,y)de
a
Then, applying Fubini Theorem and Holder inequality in L:;,‘j’z,,) we have

B, = sup | /. ff(m,y (dody|< sup | { ff(w,y)g(y)dy} do|

IIUH *<1

< sup I f 1@, 9l gl dar| < f I (@, 9)llpde-

9% <

LEMMA 2. If feLifom and fOeLify, then
(7) llA(”s)(f)llq) S KA (),

where r and s are positive integers.
Proof. If r =1 and s = 0, by (6) we have

x+h
MAfl, = If@+m)—f@ll, = || [ £ O], <BIfl,-

Thus
1A (Pl < RIATHD (F)lly < oo <AL (F)-

LEMMA 3. Let the function @(u) generating the reflexive space L('[;’:zn)
be such that o (u'®) is convex for some a,1 < a < 2, and let

Ey(f)y =00  for >0,
then
If5(@)—f @), = O+ for k> 8.
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Proof. It is known (see [2]) that if ¢(u) satisfies all the assumptions
of this Lemma, then

1 R C ak—1717a 1a
. W (fa .,;L—)¢ < ;k {2 I-Ev—l(f }

P=1

Thus, if B,(f), = 0(n~"),

0(t? when g <k,
1ja
(8) wr(f, 1)y =. O(tk (log it) ) when pg==k,
0 (1") when 8> k.
Moreover,
: fAuf m)dn=-—f§( “(f) @ iman = (— 1 (@) —f @)
and
k+1
Q frto)—f) =472 f atf ().

Finally, by (6) we have
@ —f@l, <o f 14Ef @)l @ = O (k).

LEMMA 4. Under the assumptions of Lemma 3, if B,(f), = O(n™%),
where k is an odd mumber, then

If5(@)—f(@)ll, = O®Y).

Proof. It follows from the equality (8) that if ¥ is an odd number
and Ey(f), = O(n~"), then

w1 (fy 1) = O(1).
On the other hand (see [4], p. 61),

k k-1
3 (-1 (’;) Flaton—flo—o)y = 3 A f(a— kit s1).
v=0 8§=0

Then, in virtue of formula (9), we have

h h k-
1
file) =) = o f Ak f @)+ AEf @)t = - f 2 AEF (o Kt st) it

8§=0
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Since .
A f(m— Tt -+ st)l, < wrga(Fy )y,

we obtain
B k-1

@ —f@l, =5 | [ 3 a8 st snal]

k ,
< f 01 (F5 )l = O ().

LevMMA 5. Under the assumptions of Lemma 3, if
E.(f)y =007, k<p<k+l,
k is an odd frmmber, then
" - 15 (@) —F@)l, = 0.
Proof. Flrst ‘we observe that Z TR il f), is convergent, and by [2],

Theorem 2, the function f(x) has an absolutely continuous derivative
of order (r+ ) such that fOeL*? and the following estimates are true:

1 10N . N 1 e
on(13) < Bl [ e ] [ ) e
? v=1 v=n+1
Thus, if E,(f), = 0(n*), we have
o) when p—r <Fk,
' r v 1 1/a
(10) wr(fO, 1 0 (t (log 7) ) when f—r ==k,

Ty

0 (t") when f—r>k.
From (7) we have

opg1(fy D < For(F9, 1),
Hence and from (10),

w1 (fy 1)y = O(1F).
Consequently,

h
k
1@ —F @), <5 [ rnalf, Dot = 0.
0

LEMMA 6. Let
Ifa—fll, = O(h%), p>o0.
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Then
Eu(f)y = 0(n~").
Proof. First we show that
[k (0)dt = 0 (n™?).
0
Indeed, as is well known (see e.g.[5]) there exists a sequence {k,(t)}
(n =0,1,...) of trigonometric polynomials of degree < n such that

T

(). fkn ydt =1,
(8 flknt)ldt 01,
(v) [tk ldt < Coln+1)7%, 0 =0,1,...

Denoting k,(t) = b,(sin1pt/sint)*o where 2k, > -+ 4 and p is a natural
number, and applying Bernstein’s inequality for k,(?):

len ()] < ] Ko (1)1
we observe that
JER I @)1de < o [ O I O] di4n [ 17 k(0]
0 0

= O(n—ﬂj+0(n~ﬂ—l) = 0(n~?).

Next, we construct trigonometric polynomials

T (@) = (~1)%+ fk(tZ( () (@+ot) dt

In account of (a) we have

Tp (@) —f (@) = (=1 [ B (1) {AFf () + A% of ()} dit.

Differentiating by parts and applying (9) we have

T (@) —f(@)] < OQ) [11f (@) —FF (@) kn (D) dt,
and finally

T

1T (@) —F(@)ll, < O1) [T+ )k (0) dt = O(n?).

0
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From Lemmas 3,4,5,6 we obtain
THEOREM 1. Let § > 0. Then the conditions

Bu(f)y = 00"  and  ||fs—fl, = O(h")

are equivalent for B << k when k is an even number, and for § < k41 when
k is an odd number. :

THEOREM 2. If
o(h*) for  k even,

ke —
L

then f(x) = ¢ almost everywhere.
Proof of this Theorem is completely analogous to that given in [4]
THEOREM 3. (a) Let k be an even mumber. Then

If2—fll, = O(K")

if and only if the following two conditions are satisfied:

(i) f(x) = g(®) a.e., where g(x) is a function with absolutely continuous
derivative of order (k—2) and g" Ve Ly,

(i) ("7, k) = O(h).

(b) Let k be an odd number. Then

Ifa—1fll, = O(R*)

if and only if the following two conditions are satisfied:

(1) f(z) = g(x) a.e., where g(x) has an absolutely continuous derivative
of order (k—1) such that g® eLifsm,

(i) @19, h)p = O(h). |

Proof. (a) The sufficiency of these conditions follows immediately
from some obvious properties of the modulus of smoothness and from (9).

Now, we shall prove the necessity of these conditions. Because Y’ o™ 'Zy(f),
v=1

is convergent for r = k—1 we see that f(z) has an absolutely continuous
derivative of order (k—2) such that f*V ¢L**. In account of (10) we
observe that

@3 (f7D, b), = O(h).
Next, we put

[ () —f ()]
h® ’

Sn(2) = on (@) =

[4
(1= 5 ) o

An(®) = aynco8ma -+ by sinmaz,

M:

0

T
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where a,,, b,, are the Fourier coefficients of f(x), o,(v) are Fejér means
of order < » for f(x),

1 k3
onle) == [ 1@ ent—oa

(see [1], p. 146). In account of (6)
“Gn”qJ < ”f”lp? feL;kO%ﬂ)'
Arguing as in [4] we observe that Fejér means of the series m¥ A, ()
m=1

are bounded in L;‘:,‘fz,,), and Z%-times differentiating the Fourie series
of f(z) we obtain a k-times uniformly eonvergent series. If g(x) is the sum
of the Fourier series of f(x), then from [1], p. 88, ‘

g% (@+h)—g* D (@), = O(R).

Proof of (b) is analogous.
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