On the Neumann problem in an \(n \)-dimensional half-space

In the present paper we give a solution of the problem of Neumann in the \(n \)-dimensional half-space. The assumptions concerning the density of \(f(s) \) are more general than in the paper \([1]\) (see \([1]\), p. 185-192).

Let \(q \) denote the distance of the points \(X = (x_1, \ldots, x_n) \) and \(S = (s_1, \ldots, s_{n-1}) \) and let \(dS = ds_1 \ldots ds_{n-1} \).

Let \(f(S) \) be a continuous function defined in the whole \((n-1)\)-dimensional Euclidean space \(E_{n-1}, T = (t_1, \ldots, t_{n-1}, 1), |T|^n = (t_1^2 + \ldots + t_{n-1}^2 + 1)^{n/2} \) and \(dT = dt_1 \ldots dt_{n-1} \). We shall prove that, under some assumptions on this function, the solution of Neumann problem in half-space is given by the formula

\[
(1) \quad u(X) = \frac{1}{(2-n)a_n} \iint_{E_{n-1}} f(S) dS \left(\frac{1}{2} - \frac{n-1}{2} \right)
\]

where \(a_n = \iiint_{|T|^n} dT \). That means that if \(x_n > 0 \) then the function \(u(X) \) satisfies the conditions 1° \(u(X) \in C^2, 2° \Delta u(X) = 0, 3° \) if \(X \to (x_1^0, \ldots, x_{n-1}^0, 0) \) then we have \(\lim u'(X) = f(x_1^0, \ldots, x_{n-1}^0) \).

We begin with two definitions and two lemmas. We shall consider two classes of functions, \(K \) and \(L \).

Definition 1. \(K \) is the class of functions \(f(X) \) defined in \(E_{n-1} \) and satisfying the following conditions: 1° \(f(X) \) is continuous in \(E_{n-1}, 2° \) there exist a positive constant \(r_1 \) and a function \(\omega(r) \), where \(r = (s_1^2 + \ldots + s_{n-1}^2)^{1/2} \geq r_1 \), such that if \(r \) is outside \(C(K_{r_1}) = \{S: s_1^2 + \ldots + s_{n-1}^2 = r_1\} \), then \(|f(S)| < \omega(r) \), 3° \(\omega(r) \) is a nonnegative nondecreasing function such that the integral \(\int_{r_1}^\infty r^{-2} \omega(r) dr \) is finite.
Definition 2. \(L \) is the class of functions defined for \(S \in E_{n-1} \) and satisfying the following conditions: 1° \(f(S) \) is continuous in \(E_{n-1} \), 2° there exists a nonnegative nondecreasing, continuous function \(\Omega(r) \) defined for \(r \geq 0 \) such that for every pair of points \((x_1, \ldots, x_{n-1}), (y_1, \ldots, y_{n-1}) \in E_{n-1} \) and \(r = |XY| \) the inequality
\[
|f(x_1, \ldots, x_{n-1}) - f(y_1, \ldots, y_{n-1})| \leq \Omega(r)
\]
is satisfied, 3° the integral \(\int_1^\infty r^{-2} \Omega(r) \, dr \) is finite, 4° there exists a continuous nonnegative function \(\varphi(x) \) defined for \(x \geq 0 \) such that \(\varphi(0) = 0 \) and \(\Omega(a \cdot b) \leq \varphi(a) \Omega(b) \) for \(a \geq 0, b \geq 0 \).

Lemma 1. If \(f(S) \in K \), then the integrals
\[
J_1 = \int_{E_{n-1}} f(S) \, dS, \quad J_2 = \int_{E_{n-1}} \frac{(x_1 - s_1)^2 + \ldots + (x_{n-1} - s_{n-1})^2 + x_n^2}{r^{n+2j}} \, dS
\]
converge uniformly in any cylinder \(x_1^2 + \ldots + x_{n-1}^2 \leq B^2, \eta < x_n < A \), where \(\eta, A \) and \(B \) are arbitrary positive numbers, and \(i = 1, \ldots, n-1, \) \(j = 0, 1 \).

Proof. Let \(r = (s_1^2 + \ldots + s_{n-1}^2)^{1/2} \). We choose two numbers \(r_0 \) and \(B \) such that \(r_0 \geq 2B \) and the inequality
\[
f(S) < \omega(r) \quad \text{if} \quad r \geq r_0,
\]
is satisfied. If \(r \geq r_0 \), then we have
\[
\rho = [(x_1 - s_1)^2 + \ldots + (x_{n-1} - s_{n-1})^2 + x_n^2]^{1/2} \geq r - B \geq r - \frac{1}{2}r = \frac{1}{2}r,
\]
and, in view of (2), we obtain
\[
\int_{E_{n-1}} f(S) \, dS \leq 4C \int_{E_{n-1}} \omega(r) \, dS,
\]
where \(C \) is a positive number. Let us introduce spherical coordinates
\[
(T) \quad s_1 = r \cos \varphi_1 \ldots \cos \varphi_{n-1} \sin \varphi_{n-1}, \ldots, \quad s_{n-1} = r \sin \varphi_1
\]
in the right-hand integral which is transformed into the following
\[
\int_{E_{n-1}} \rho^{-2} \omega(r) \, dS = C_1 \int_0^\infty \omega(r) r^{n-2} \, dr = C_1 \int_0^\infty \frac{\omega(r)}{r^{n+2j}} \, dr,
\]
where \(C_1 \) is a positive constant. We have assumed that \(\int_0^\infty \frac{\omega(r)}{r^{n+2j}} \, dr < \infty \).

Then for every \(\varepsilon > 0 \) there exists \(r_1(\varepsilon) \) such that if \(R > r_1(\varepsilon) \), then
\[
\int_{E_{n-1}} f(S) \, dS < \varepsilon.
\]
In order to prove the uniform convergence of the integral J_2 we consider the inequality

$$|x_i - s_i| \leq r + (x_1^2 + \ldots + x_{n-1}^2)^{1/2} \leq r + B \leq \frac{1}{3}r.$$

Hence if $r \geq r_0$ we obtain

$$|J_2| = \left| \sum_{S \in C(K)} f(S) \frac{|x_i - s_i|^i}{\frac{1}{2} + j} dS \right| \leq C \sum_{S \in C(K)} \frac{\omega(r)^i}{r^{n+2j}} dS$$

and, by introducing the transformation (T) we obtain finally

$$|J_2| \leq C_1 R^{-j} \int \frac{\omega(r)}{r^2} dr < \varepsilon.$$

Lemma 2. If $f(S)$ is continuous in E_{n-1} and $f(S) \in K \subset L$, then the function

$$(3) \quad v(X) = \frac{x_n}{a_n} \sum_{S \in E_{n-1}} f(S) \frac{|x_i - s_i|^i}{\frac{1}{2} + j} dS$$

converges to $f(x_1^0, \ldots, x_{n-1}^0)$ when $(x_1, \ldots, x_n) \rightarrow (x_1^0, \ldots, x_{n-1}^0, 0)$.

Proof. Lemma 1 implies the continuity of $u(X)$ in the half-space $x_n > 0$. Moreover, we have

$$f(x_1^0, \ldots, x_{n-1}^0) = \frac{1}{a_n} \sum_{S \in E_{n-1}} f(x_1^0, \ldots, x_{n-1}^0) dT.$$

We transform the integral (3) and obtain substituting $s_1 - x_1 = t_1 x_n, \ldots, s_{n-1} - x_{n-1} = t_{n-1} x_n$,

$$v(X) = \frac{1}{a_n} \sum_{S \in E_{n-1}} f(x_1 + t_1 x_n, \ldots, x_{n-1} + t_{n-1} x_n) \frac{|x_i - s_i|^i}{|T|^n} dT.$$

Then

$$g(X) = v(X) - f(x_1^0, \ldots, x_{n-1}^0)$$

$$= \frac{1}{a_n} \sum_{S \in E_{n-1}} \frac{[f(x_1 + t_1 x_n, \ldots, x_{n-1} + t_{n-1} x_n) - f(x_1^0, \ldots, x_{n-1}^0)]}{|T|^n} dT$$

and

$$g(X) \leq \frac{1}{a_n} \sum_{S \in E_{n-1}} \frac{\Omega\left(\sum_{i=1}^{n-1} (|x_i - x_i^0 + t_i x_n|^2)^{1/2}\right)}{|T|^n} dT$$

$$\leq \frac{1}{a_n} \sum_{S \in E_{n-1}} \frac{\Omega\left(\sum_{i=1}^{n-1} (|x_i - x_i^0| + |t_i x_n|^2)^{1/2}\right)}{|T|^n} dT.$$
Let ε be an arbitrary positive number. If the coordinates of a point X satisfy the inequalities $|x_1-x_1^0| < \varepsilon, \ldots, |x_{n-1}-x_{n-1}^0| < \varepsilon, \ 0 < x_n < \varepsilon,$ then we have

$$\Omega \left\{ \left(|x_1-x_1^0| + |t_1|x_n \right)^2 + \ldots + \left(|x_{n-1}-x_{n-1}^0| + |t_{n-1}|x_n \right)^2 \right\}^{1/2} \leq \Omega (n \varepsilon |T|) \leq \varphi (n \varepsilon) \Omega (|T|).$$

In view of the convergence of the integral

$$J = \sum_{n=1}^{\infty} \frac{\Omega (|T|)}{|T|^n} \ dT$$

we obtain the estimation

$$|g(X)| \leq \frac{\varphi (n \varepsilon)}{a_n} \sum_{n=1}^{\infty} \frac{\Omega (|T|)}{|T|^n} = C_1 \frac{\varphi (n \varepsilon)}{a_n},$$

where C_1 is a positive constant. In fact, if we apply the transformation (T), then we have

$$J = C_2 \int_0^\infty \frac{\Omega \left((r^2+1)^{1/2} \right) r^{n-2}}{(r^2+1)^{n/2}} \ dr, \quad C_2 = \text{const},$$

$$\int_0^\infty \frac{\Omega \left((r^2+1)^{1/2} \right) r^{n-2}}{(r^2+1)^{n/2}} \ dr \leq \int_0^\infty \frac{\Omega \left((r^2+1)^{1/2} \right) (r^2+1)^{(n-2)/2}}{(r^2+1)^{n/2}} \ dr = \int_0^\infty \frac{\Omega \left((r^2+1)^{1/2} \right)}{r^2+1} \ dr$$

$$\leq \varphi (2) \int_0^\infty \frac{\Omega (r)}{r^2} \ dr \quad (R > 1).$$

So we conclude that $g(X) \to 0$ if $X \to (x_1^0, \ldots, x_{n-1}^0, 0)$.

Theorem. If $f(X)$ is continuous and belongs to $K \subset L$ for $S \varepsilon E_{n-1}$ then the function $u(X)$ defined by formula (1) is a solution of the problem of Neumann in the half space $x_n > 0$.

This follows from Lemma 1 (since the function φ^{2-n} is harmonic).

References