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On the Lebesgue property in metric spaces

1. We are concerned in this paper with the following properties 
which a metric space (X, d) might enjoy:

(i) (X, d) is compact;
(ii) For every pair of disjoint, non-empty, closed sets E and F  in 

X, there exist an x in E and a у in F  for which E(E, F) =  d(x, y), where 
D (E, F) is the distance between E  and F ;

(iii) D(E,F )  > 0  for every pair of disjoint, non-empty, closed sets 
E and F  in X ;

(iv) For an open cover Ф of X,  there exists an rj >  0 such that for A 
a subset of X  with diam A <  rjy then A a О for some ОсФ (we will call 
{X,d)  an L-space (for Lebesgue) when (iv) holds);

(v) Every continuous function /  from (X , d) to any space (X *, d*) 
is uniformly continuous;

(vi) (X , d) is complete.
In the sequel, frequent use will be made of
Theorem ] . (i) (ii) -> (iii) <-» (iv) «-» (v) -> (vi).
Proofs of the equivalence of (iii), (iv), and (v) may be found in both 

[1] and [7]. That (i) implies (ii) is well known and that (ii) implies (iii) 
is trivial. It is proved in [5] that (v) implies (vi).

E xample 1. Let (X, d) be any infinite discrete metric space, i.e., 
let d(x,y) = 1  if x Фу.  Then (X,d)  has property (ii), but not prop­
erty (i).

Example 2. Let X  =  {(n, 0): n =  1, 2, ...} w {(w, 1 +  1/n): n =  
1, 2 , .. .}  in the plane and let d be the usual metric. (X, d) has property 
(iii), but not property (ii) as is seen by taking E — {{n, 0): n =  1, 2 , .. .}  
and F  =  {(n, 1 +1 /n): n — 1 ,2 ,.. .} .

The reals with the usual metric is an example of a metric space which 
has property (vi), but not property (v) (or (iv) or (iii)).

2. In this section we will give another characterization of metric 
spaces (X, d) which have property L. We begin with
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Lemma 1. Let (X , d) be a metric space and let Y be a subspace of X. 
I f  Y has property L (relative to d), then Y is closed.

P ro o f. This follows from the fact that L -spaces are complete (The­
orem 1 ).

Lemma 2. I f  (X , d) is an L- space and Y a closed subset of X , then 
Y is an L-space (relative to d).

P ro o f. Let E  and F  be non-empty, disjoint, closed subsets of Y. 
Then E  and F  are closed in X  and hence by Theorem 1, D{E, F) >  0. 
Thus (Y, d) has property (iii) and hence is an L-  space.

Lemma 3. Let (X , d) be a metric space and let E and F  be non-empty, 
closed, and disjoint in X. I f  X  =  E  w F, then (X, d) is an L- space iff 
(1 )(E,d) and (F , d ) are L-spaces and (2) D(E,F )  > 0 .

P ro o f. The necessity follows from Lemma 2 and Theorem 1. To show 
the sufficiency, let И  and J be non-empty, disjoint, closed subsets of X.  
We will consider ouly the case in which E г\ Ш, E J , F ГЛ H, and F r\ J
are each non empty *(the remaining cases that can arise may be treated 
similarly). Now D(E ^  H, E r\ J) and D {F  ^  Л, F  r\ J) are each positive 
since E  and F  are presumed to be L-spaces (see Theorem 1). Also D(E r\ H, 
F  гч J) and D{E rs J, F  ъ  Щ are each greater than or equal to D{E, F) 
which is presumed positive. But D{H, J) =  min{D(E r\ Л ,Е  r\ J), 
D(E ^  Л, F  ^  J), D(F r\H,E r* J), D {F  r\ E ,F  ^  J)} and thus E(H, J) 
> 0 . Thus (X, d) is an L-  space by Theorem 1.

Definition 1. A subset A of a metric space (X, d) is termed uni­
formly isolated iff there exists an tj >  0 such that d(a, a') >  r\ whenever 
а Ф a' in A.

Theorem 2. An unbounded metric space (X, d) is an L-space iff 
there exist non empty sets A and В in X  such that (1 )X  =  A w B, (2) A is 
bounded and is an L-space, (3) В is uniformly isolated, and (4) D{A, B) >  0.

P roof. The sufficiency follows from Lemmas 1, 2, and 3 and from 
the fact that a uniformly isolated set is closed and has property (iii) (and 
therefore is an L-  space). We now prove the necessity. Pick x* arbitrarily 
in X. It suffices to show for some positive integer n* that ^Sn,(x*) is 
uniformly isolated where ^ denotes the complement operator and Sn*(x*) 
denotes the closed ball of radius n* and center x*. Suppose then that 
no such n* exists. Then WS^x*) is not uniformly isolated and we pick 
x t Ф у х in tfSj îx*) such that d{x1, y 1) <  1. Suppose now that xx, . . . ,  
xk, yx, . . . ,  ул have been chosen, so that (1 ) d(sBit yi) < l j i  for 1  <  i <  fc, 
(2 ) х< Ф у 1 for 1  < i , j < h  and (3) d{x*,Xi)> i,  d ( x * ,y i )> i  for
1 <  i <  k. Choose nf — max {&+1, d(x*, #*), d(x*, у*), 1 <  i <  Щ. Then 
^Sn.{x*) is not uniformly isolated and we choose xk+l Ф yk+l in 
KSnfx*) such that d{xk+i, yk+l) <  Then (1), (2), and (3) hold
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when к is replaced by fc+1. Let E — {xn: n >  1} and F  — {yn: n >  1}. 
It is clear that D{E, F) =  0 and that E  ^  F =  0 . We shall anive at 
a contradiction when we show that E (and by symmetry F) is closed. 
Actually, we shall show that E  is free of limit points. To this end, suppose 
that у is a limit point of E. Then d{xn, y) <  1 for an infinite number 
of n and thus n <  d{xn, x*) ^ d { x n, y )+d (y , x*) <  lĄ-d(y, x*) for all 
such n.

Corollary 1. An unbounded metric space (X , d) which is an L- space 
is disconnected.

3. In this section we shall develop some theorems involving equi­
valent metrics. In general if (X, d) is an L- space and d* is a metric 
on X  which is equivalent to d, then (X, d*) need not be an L- space as 
shown by

E xample 3. Let X  =  {1, 2 , . . . ,  n, ...}  and let d be the usual metric. 
Let d*{n,m) =  \l/n—llm\. Then (X,d)  is an L-  space, but (X, d*) is 
not. Clearly d and d* are equivalent.

Theorem 3. Let (X, d) be a mebic space, d* — df(l-\-d) and d** =  
min (1, d}. Then (X, d) is an L-space iff (X, d*) is an L-space and iff (X, d**) 
is an L- space.

P ro o f. Note firstly that d(x, y) >  d**(x, y) >  d*(x, y) for x ,y  in 
X  and thus D(A, B) >  D**(A, B) >  D*{A, B) for all A, В in X. Applying 
Theorem 1, we see that if (X, d*) is an L -space, then (X, df*) is also; 
if (X, d**) is an L -space, then so is (X, d). Finally, suppose that (X, d) 
is an L -space and that E and F  are two non-empty, disjoint, closed 
subsets of X . Then B(E, F) — rj >  0 and hence jD*(EfF) =  rj/(l+rj) >  0 
as the reader can easily check. Thus (X, d*) is an L- space.

Theorem 4. Let (X, d) be a metric space which has property L, but 
is not compact. Then there exists a metric d* for X  such that (1) (X, d*) 
has property L, (2) (X, d*) is unbounded and (3) d* is equivalent to d.

P ro o f. Since (X, d) is not compact, there exists a real continuous 
unbounded function f* on X. Let d*(x, y) =  d{x, y) +  \f*(x)—f*(y)\ 
for all x, у in X . Now d* is a metric for X  which is equivalent to d (see 
[6]) and clearly d* ^  d. If E  and F  are two disjoint, non-empty, closed 
subsets of X , then B*(E, F) >  L>(E, F) >  0 by Theorem 1. Thus (X, d*) 
is an L- space.

Corollary 2. Let (X, d) be an L-space which is not compact. Then 
there exists a metric d** for X  which is equivalent to d and such that (X, d**) 
is not an L-space.

P ro o f. By Theorem 4 there exists a metric d* for X  which is equiv­
alent to d, is unbounded and such that (X, d*) has property L. Then 
by Theorem 2 there exist two non-empty, disjoint sets A  and В such
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that A  is bounded (relative to d*) and В is uniformly isolated (again 
relative to d*). Since В is an infinite set we can choose an infinite 
sequence of distinct points in В and let G — \xn: n > 1 } . Clearly C is 
closed in X. Let d**(xn, xm) =  \l/n—lfm\. Now d** is equivalent to 
d* on C and by a well known theorem of Bing (see [2]), d** can be ex­
tended to all of X. But (X, d**) does not have property L; for let E =  {x2n: 
n >  1) and F — {x2n_i: n >  1}. E  and F  are closed, non empty and 
disjoint, but D**(E, F) =  0.

Corollary 3. Let (X , d) be a non compact metric space which has 
property L. Then (X,d) is disconnected.

P ro o f. This follows from Theorem 4 and Corollary 1. (This is The­
orem 2 in [3], IV.)

Theorem 5. Let (X, d) be a metric space and let E and F  be two non­
empty, disjoint subspaces each of which is an L-space (and hence closed 
by Lemma 1). Suppose further that X  — E  ^ F and that D(E, F) — 0. 
Then (a) (X, d) is not an L-space but (b) there exists a metric d* on X  such 
that (1) d* is equivalent to d and (2) (X, d*) is an L-space.

P ro o f, (a) follows from Lemma 3. To prove (b), we define

d*(x, y)

d(x, y) if x and у are in E, 

d(x, y) if x and у are in F, 

d(x ,y )Jr 1  otherwise.
We leave it to the reader to verify that d* is a metric on X  which is 

equivalent to d. Since E  and F  are still L - spaces relative to d* and since 
B*(E, F) ^  1 , it folio w s from Lemma 3 that (f , d ) is an Tj — space.
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