PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 2 |
Tytuł artykułu

Prace Leonharda Eulera o kwadraturze koła i liczbie pi

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
PL
Prace Leonharda Eulera o kwadraturze koła i liczbie π Okres ostatnich 23 stuleci rozwoju matematyki można podzielić na trzy zachodzące na siebie epoki. Okres I - do XVII stulecia, w którym zagadnienia dotyczące liczby π i kwadratury rozwiązywane były geometrycznie, głównie w oparciu o pomysł Archimedesa: przybliżania obwodu (albo pola) koła wielokątami foremnymi wpisanymi lub opisanymi na tym kole. Okres II, w którym obliczano przybliżenia π w oparciu o różne wzory, w postaci szeregów, rzadziej - iloczynów nieskończonych. Okres ten trwa do dziś. Wreszcie III okres, rozpoczęty w połowie XVIII wieku, to badania jakościowe liczby π: jej niewymierność (J. - H. Lambert, 1767), niewymierność π2 (A. - M. Legendre, 1794), przestępność (F. Lindemann, 1882), wyznaczanie miary niewymierności, miary przestępności π, czy też próby sklasyfikowania tej liczby w odpowiednim zbiorze liczb przestępnych (klasyfikacja Mahlera).
EN
Prace Leonharda Eulera o kwadraturze koła i liczbie  pi Okres ostatnich 23 stuleci rozwoju matematyki można podzielić na trzy zachodzące na siebie epoki. Okres I - do XVII stulecia, w którym zagadnienia dotyczące liczby π i kwadratury rozwiązywane były geometrycznie, głównie w oparciu o pomysł Archimedesa: przybliżania obwodu (albo pola) koła wielokątami foremnymi wpisanymi lub opisanymi na tym kole. Okres II, w którym obliczano przybliżenia π w oparciu o różne wzory, w postaci szeregów, rzadziej - iloczynów nieskończonych. Okres ten trwa do dziś. Wreszcie III okres, rozpoczęty w połowie XVIII wieku, to badania jakościowe liczby π: jej niewymierność (J. - H. Lambert, 1767), niewymierność π2 (A. - M. Legendre, 1794), przestępność (F. Lindemann, 1882), wyznaczanie miary niewymierności, miary przestępności π, czy też próby sklasyfikowania tej liczby w odpowiednim zbiorze liczb przestępnych (klasyfikacja Mahlera).
Słowa kluczowe
PL
 
EN
 
Rocznik
Tom
2
Opis fizyczny
Daty
wydano
2008
online
2017-10-02
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_am_v2i1_5117
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.