Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For a 2-connected cubic graph G, the perfect matching polytope P(G) of G contains a special point [...] xc=(13,13,…,13) $x^c = \left( {{1 \over 3},{1 \over 3}, \ldots ,{1 \over 3}} \right)$ . The core index ϕ(P(G)) of the polytope P(G) is the minimum number of vertices of P(G) whose convex hull contains xc. The Fulkerson’s conjecture asserts that every 2-connected cubic graph G has six perfect matchings such that each edge appears in exactly two of them, namely, there are six vertices of P(G) such that xc is the convex combination of them, which implies that ϕ(P(G)) ≤ 6. It turns out that the latter assertion in turn implies the Fan-Raspaud conjecture: In every 2-connected cubic graph G, there are three perfect matchings M1, M2, and M3 such that M1 ∩ M2 ∩ M3 = ∅. In this paper we prove the Fan-Raspaud conjecture for ϕ(P(G)) ≤ 12 with certain dimensional conditions.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
189-201
Opis fizyczny
Daty
wydano
2018-02-01
otrzymano
2016-04-04
poprawiono
2016-10-31
zaakceptowano
2016-10-31
online
2017-12-30
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_2001