PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 37 | 3 | 797-809
Tytuł artykułu

A Degree Condition Implying Ore-Type Condition for Even [2,b]-Factors in Graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a graph G and even integers b ⩾ a ⩾ 2, a spanning subgraph F of G such that a ⩽ degF (x) ⩽ b and degF (x) is even for all x ∈ V (F) is called an even [a, b]-factor of G. In this paper, we show that a 2-edge-connected graph G of order n has an even [2, b]-factor if [...] max {degG (x),degG (y)}⩾max {2n2+b,3} $\max \{ \deg _G (x),\deg _G (y)\} \ge \max \left\{ {{{2n} \over {2 + b}},3} \right\}$ for any nonadjacent vertices x and y of G. Moreover, we show that for b ⩾ 3a and a > 2, there exists an infinite family of 2-edge-connected graphs G of order n with δ(G) ⩾ a such that G satisfies the condition [...] degG (x)+degG (y)>2ana+b $\deg _G (x) + \deg _G (y) > {{2an} \over {a + b}}$ for any nonadjacent vertices x and y of G, but has no even [a, b]-factors. In particular, the infinite family of graphs gives a counterexample to the conjecture of Matsuda on the existence of an even [a, b]-factor.
Słowa kluczowe
Wydawca
Rocznik
Tom
37
Numer
3
Strony
797-809
Opis fizyczny
Daty
wydano
2017-08-01
otrzymano
2016-02-01
poprawiono
2016-06-17
zaakceptowano
2016-07-15
online
2017-07-06
Twórcy
  • , , 2-1-1 Higashimita, Tama-ku, Kawasaki-shi, ,
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.