Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set of vertices V(G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the p-corona of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of p-coronae of paths and cycles for every p ≥ 1. Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of p-coronae of paths and cycles.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
665-690
Opis fizyczny
Daty
wydano
2017-08-01
otrzymano
2016-03-18
poprawiono
2016-06-06
zaakceptowano
2016-06-06
online
2017-07-06
Twórcy
autor
- , , B.P. 32 El-Alia, Bab-Ezzouar, ,
autor
- , , B.P. 32 El-Alia, Bab-Ezzouar, ,
autor
- , LaBRI, UMR5800, F-33400 Talence, ; CNRS, LaBRI, UMR5800, F-33400 Talence,
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1963