PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 37 | 3 | 711-727
Tytuł artykułu

Kaleidoscopic Colorings of Graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For an r-regular graph G, let c : E(G) → [k] = {1, 2, . . . , k}, k ≥ 3, be an edge coloring of G, where every vertex of G is incident with at least one edge of each color. For a vertex v of G, the multiset-color cm(v) of v is defined as the ordered k-tuple (a1, a2, . . . , ak) or a1a2 … ak, where ai (1 ≤ i ≤ k) is the number of edges in G colored i that are incident with v. The edge coloring c is called k-kaleidoscopic if cm(u) ≠ cm(v) for every two distinct vertices u and v of G. A regular graph G is called a k-kaleidoscope if G has a k-kaleidoscopic coloring. It is shown that for each integer k ≥ 3, the complete graph Kk+3 is a k-kaleidoscope and the complete graph Kn is a 3-kaleidoscope for each integer n ≥ 6. The largest order of an r-regular 3-kaleidoscope is [...] (r−12) $\left( {\matrix{{r - 1} \cr 2 } } \right)$ . It is shown that for each integer r ≥ 5 such that r ≢ 3 (mod 4), there exists an r-regular 3-kaleidoscope of order [...] (r−12) $\left( {{{r - 1} \over 2}} \right)$ .
Wydawca
Rocznik
Tom
37
Numer
3
Strony
711-727
Opis fizyczny
Daty
wydano
2017-08-01
otrzymano
2015-09-11
poprawiono
2016-04-18
zaakceptowano
2016-06-13
online
2017-07-06
Twórcy
autor
  • , , , MI ,
autor
  • , , , MI ,
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1950
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.