Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Discussiones Mathematicae Graph Theory

2017 | 37 | 1 | 221-238

## The Dichromatic Number of Infinite Families of Circulant Tournaments

EN

### Abstrakty

EN
The dichromatic number dc(D) of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by [...] T=C→2n+1(1,2,…,n) $T = \overrightarrow C _{2n + 1} (1,2, \ldots ,n)$ , where V (T) = ℤ2n+1 and for every jump j ∈ {1, 2, . . . , n} there exist the arcs (a, a + j) for every a ∈ ℤ2n+1. Consider the circulant tournament [...] C→2n+1〈k〉 $\overrightarrow C _{2n + 1} \left\langle k \right\rangle$ obtained from the cyclic tournament by reversing one of its jumps, that is, [...] C→2n+1 〈k〉 $\overrightarrow C _{2n + 1} \left\langle k \right\rangle$ has the same arc set as [...] C→2n+1(1,2,…,n) $\overrightarrow C _{2n + 1} (1,2, \ldots ,n)$ except for j = k in which case, the arcs are (a, a − k) for every a ∈ ℤ2n+1. In this paper, we prove that [...] dc(C→2n+1 〈k〉)∈{2,3,4} $dc ( {\overrightarrow C _{2n + 1} \left\langle k \right\rangle } ) \in \{ 2,3,4\}$ for every k ∈ {1, 2, . . . , n}. Moreover, we classify which circulant tournaments [...] C→2n+1 〈k〉 $\overrightarrow C _{2n + 1} \left\langle k \right\rangle$ are vertex-critical r-dichromatic for every k ∈ {1, 2, . . . , n} and r ∈ {2, 3, 4}. Some previous results by Neumann-Lara are generalized.

EN

221-238

wydano
2017-02-01
poprawiono
2016-04-07
zaakceptowano
2016-04-07
otrzymano
2016-06-30
online
2017-01-13

### Twórcy

autor
• Departamento de Matemáticas, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, 09340, México, D.F.,
autor
• Departamento de Matemáticas, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, 09340, México, D.F.,