Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let D be a finite and simple digraph with vertex set V (D). A signed total Roman dominating function (STRDF) on a digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The weight of an STRDF f is w(f) = ∑v∈V (D) f(v). The signed total Roman domination number γstR(D) of D is the minimum weight of an STRDF on D. In this paper we initiate the study of the signed total Roman domination number of digraphs, and we present different bounds on γstR(D). In addition, we determine the signed total Roman domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed total Roman domination number γstR(G) of graphs G.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
261-272
Opis fizyczny
Daty
wydano
2017-02-01
otrzymano
2015-08-28
poprawiono
2016-04-15
zaakceptowano
2016-04-15
online
2017-01-13
Twórcy
autor
- Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen,, volkm@math2.rwth-aachen.de
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1929