EN
The generalized k-connectivity κk(G) of a graph G was introduced by Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λ(S) : S ⊆ V (G) and |S| = k}, where λ(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper, we study the generalized edge- connectivity of product graphs and obtain sharp upper bounds for the generalized 3-edge-connectivity of Cartesian product graphs and strong product graphs. Among our results, some special cases are also discussed.