PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 36 | 4 | 889-897
Tytuł artykułu

An Extension of Kotzig’s Theorem

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1955, Kotzig proved that every 3-connected planar graph has an edge with the degree sum of its end vertices at most 13, which is tight. An edge uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. Borodin (1991) proved that every normal plane map contains an edge of one of the types (3, 10), (4, 7), or (5, 6), which is tight. Cole, Kowalik, and Škrekovski (2007) deduced from this result by Borodin that Kotzig’s bound of 13 is valid for all planar graphs with minimum degree δ at least 2 in which every d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2. We give a common extension of the three above results by proving for any integer t ≥ 1 that every plane graph with δ ≥ 2 and no d-vertex, d ≥ 11+t, having more than d − 11 neighbors of degree 2 has an edge of one of the following types: (2, 10+t), (3, 10), (4, 7), or (5, 6), where all parameters are tight.
Słowa kluczowe
Wydawca
Rocznik
Tom
36
Numer
4
Strony
889-897
Opis fizyczny
Daty
wydano
2016-11-01
otrzymano
2015-10-09
poprawiono
2016-01-06
zaakceptowano
2016-01-06
online
2016-10-21
Twórcy
  • Institute of Mathematics Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090,, brdnoleg@math.nsc.ru
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1904
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.