PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 36 | 4 | 1043-1050
Tytuł artykułu

A Note on Non-Dominating Set Partitions in Graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set S of vertices of a graph G is a dominating set if every vertex not in S is adjacent to a vertex of S and is a total dominating set if every vertex of G is adjacent to a vertex of S. The cardinality of a minimum dominating (total dominating) set of G is called the domination (total domination) number. A set that does not dominate (totally dominate) G is called a non-dominating (non-total dominating) set of G. A partition of the vertices of G into non-dominating (non-total dominating) sets is a non-dominating (non-total dominating) set partition. We show that the minimum number of sets in a non-dominating set partition of a graph G equals the total domination number of its complement G̅ and the minimum number of sets in a non-total dominating set partition of G equals the domination number of G̅ . This perspective yields new upper bounds on the domination and total domination numbers. We motivate the study of these concepts with a social network application.
Wydawca
Rocznik
Tom
36
Numer
4
Strony
1043-1050
Opis fizyczny
Daty
wydano
2016-11-01
otrzymano
2015-08-12
poprawiono
2016-01-23
zaakceptowano
2016-01-26
online
2016-10-21
Twórcy
  • Research supported in part by the University of Johannesburg, wjdesormeaux@gmail.com
  • Department of Mathematics, University of Johannesburg Auckland Park, 2006,
  • Research supported in part by the University of Johannesburg, haynes@etsu.edu
  • Department of Mathematics, University of Johannesburg Auckland Park, 2006 South Africa
  • Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37614-0002,
  • Research supported in part by the University of Johannesburg and the South African National Research Foundation, mahenning@uj.ac.za
  • Department of Mathematics, University of Johannesburg Auckland Park, 2006,
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1895
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.