Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Discussiones Mathematicae Graph Theory

2015 | 35 | 4 | 755-764

## On Super (a, d)-H-Antimagic Total Covering of Star Related Graphs

EN

### Abstrakty

EN
Let G = (V (G),E(G)) be a simple graph and H be a subgraph of G. G admits an H-covering, if every edge in E(G) belongs to at least one subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijection λ: V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)| + |E(G)|} such that for all subgraphs H′ isomorphic to H, the H′ weights [...] constitute an arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d where a and d are positive integers and n is the number of subgraphs of G isomorphic to H. Additionally, the labeling λ is called a super (a, d)-H-antimagic total labeling if λ(V (G)) = {1, 2, 3, . . . , |V (G)|}. In this paper we study super (a, d)-H-antimagic total labelings of star related graphs Gu[Sn] and caterpillars.

EN

755-764

wydano
2015-11-01
otrzymano
2014-03-10
poprawiono
2015-02-27
zaakceptowano
2015-02-27
online
2015-11-10

### Twórcy

autor
• Centre for Research and Post Graduate Studies in Mathematics Ayya Nadar Janaki Ammal College (Autonomous) Sivakasi-626 124, Tamil Nadu, INDIA
autor
• Department of Mathematics Rajapalayam Rajus’ College Rajapalayam-626 117, Tamil Nadu, INDIA

### Bibliografia

• [1] A. Gutierrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005) 43-56.
• [2] N. Inayah, A.N.M. Solmankl and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 273-281.
• [3] N. Inayah, A. Llado and J. Moragas, Magic and antimagic H-decompositions, Dis- crete Math. 312 (2012) 1367-1371. doi:10.1016/j.disc.2011.11.041[Crossref]
• [4] N. Inayah, R. Simanjuntak and A.N.M. Salman, Super (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013) 127-138.
• [5] A. Kotzig and A. Rosa, Magic valuations of finite graph, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1[Crossref]
• [6] A. Llado and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007) 2925-2933. doi:10.1016/j.disc.2007.03.007[Crossref]
• [7] T.K. Maryati, E.T. Baskoro and A.N.M. Salman, Ph-supermagic labelings some trees, J. Combin. Math. Combin. Comput. 65 (2008) 197-204.
• [8] M. Roswitha and E.T. Baskoro, H-magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012) 135-138. doi:10.1063/1.4724129 [Crossref]