Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing set if no two vertices of S have a common neighbour in G. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The minimum and maximum cardinalities of a maximal open packing set are respectively called the lower open packing number and the open packing number and are denoted by ρoL and ρo. In this paper, we present some bounds on these parameters.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
5-16
Opis fizyczny
Daty
wydano
2015-02-01
otrzymano
2013-02-25
poprawiono
2013-09-17
zaakceptowano
2013-12-09
online
2015-02-06
Twórcy
autor
- Department of Mathematics The Madura College Madurai, India, sahulmat@yahoo.co.in
autor
- Department of Mathematics The Madura College Madurai, India, alg.ssk@gmail.com
Bibliografia
- [1] N. Biggs, Perfect codes in graphs, J. Combin. Theory (B) 15 (1973) 289-296. doi:10.1016/0095-8956(73)90042-7[Crossref]
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition (CRC Press, Boca Raton, 2005).
- [3] L. Clark, Perfect domination in random graphs, J. Combin. Math. Combin. Comput. 14 (1993) 173-182.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988).
- [5] M.A. Henning, Packing in trees, Discrete Math. 186 (1998) 145-155. doi:10.1016/S0012-365X(97)00228-8 [Crossref]
- [6] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. doi:10.2140/pjm.1975.61.225[Crossref]
- [7] J. Topp and L. Volkmann, On packing and covering number of graphs, Discrete Math. 96 (1991) 229-238. doi:10.1016/0012-365X(91)90316-T [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1775