PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 4 | 735-749
Tytuł artykułu

Extremal Unicyclic Graphs With Minimal Distance Spectral Radius

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) \ Cn.
Wydawca
Rocznik
Tom
34
Numer
4
Strony
735-749
Opis fizyczny
Daty
wydano
2014-11-01
otrzymano
2012-08-06
poprawiono
2013-05-15
zaakceptowano
2013-11-04
online
2014-11-15
Twórcy
autor
  • College of Mathematics and Statistics South Central University for Nationalities Wuhan 430074, P.R. China
autor
  • College of Mathematics and Statistics South Central University for Nationalities Wuhan 430074, P.R. China
autor
  • College of Mathematics and Statistics South Central University for Nationalities Wuhan 430074, P.R. China, zzxun73@mail.scuec.edu.cn
Bibliografia
  • [1] A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517-523. doi:10.1021/ci00004a014
  • [2] R.B. Bapat, Distance matrix and Laplacian of a tree with attached graphs, Linear Algebra Appl. 411 (2005) 295-308. doi:10.1016/j.laa.2004.06.017
  • [3] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. doi:10.1016/j.laa.2004.05.011
  • [4] B. Bollob´as, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4
  • [5] V. Consonni and R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.
  • [6] I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane, Indian J. Chem. (A) 37 (1998) 569-573.
  • [7] A. Ilić, Distance spectral radius of trees with given matching number , Discrete Appl. Math. 158 (2010) 1799-1806. doi:10.1016/j.dam.2010.06.018
  • [8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106-113. doi:10.1016/j.laa.2008.07.005
  • [9] Z. Liu, On spectral radius of the distance matrix , Appl. Anal. Discrete Math. 4 (2010) 269-277. doi:10.2298/AADM100428020L
  • [10] D. Stevanović and A. Ili´c, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168-179.
  • [11] G. Yu, Y. Wu, Y. Zhang and J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117-2123. doi:10.1016/j.disc.2011.05.040
  • [12] X. Zhang and C. Godsil, Connectivity and minimal distance spectral radius, Linear Multilinear Algebra 59 (2011) 745-754. doi:10.1080/03081087.2010.499512
  • [13] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Com- mun. Math. Comput. Chem. 58 (2007) 657-662.
  • [14] B. Zhou and N. Trinajsti´c, On the largest eigenvalue of the distance matrix of a connected graph, Chem. Phys. Lett. 447 (2007) 384-387. doi:10.1016/j.cplett.2007.09.048
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1772
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.