Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 3 | 593-602

Tytuł artykułu

Maxclique and Unit Disk Characterizations of Strongly Chordal Graphs

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs

Wydawca

Rocznik

Tom

34

Numer

3

Strony

593-602

Opis fizyczny

Daty

wydano
2014-08-01
otrzymano
2012-01-06
poprawiono
2013-04-15
zaakceptowano
2013-08-22
online
2014-07-16

Twórcy

  • Departamento de Matemática Universidad Nacional de La Plata/ CONICET La Plata, Buenos Aires, Argentina
  • Department of Mathematics and Statistics Wright State University Dayton, Ohio 45435 USA

Bibliografia

  • [1] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J. Discrete Math. 11 (1998) 437-455. doi:10.1137/S0895480193253415[Crossref]
  • [2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796[Crossref]
  • [3] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs: properties and characterizations, Discrete Appl. Math. 160 (2012) 2627-2635. doi:10.1016/j.dam.2012.02.022[WoS][Crossref]
  • [4] P. De Caria and M. Gutierrez, On the correspondence between tree representations of chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014) 500-511. doi:10.1016/j.dam.2013.07.011[Crossref][WoS]
  • [5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189. doi:10.1016/0012-365X(83)90154-1[Crossref]
  • [6] T.A. McKee, How chordal graphs work, Bull. Inst. Combin. Appl. 9 (1993) 27-39.
  • [7] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247. doi:10.1016/S0012-365X(99)00107-7[Crossref]
  • [8] T.A. McKee, Subgraph trees in graph theory, Discrete Math. 270 (2003) 3-12. doi:10.1016/S0012-365X(03)00161-4[Crossref]
  • [9] T.A. McKee, The neighborhood characteristic parameter for graphs, Electron. J. Combin. 10 (2003) #R20.
  • [10] T.A. McKee, When fundamental cycles span cliques, Congr. Numer. 191 (2008) 213-218.
  • [11] T.A. McKee, Simplicial and nonsimplicial complete subgraphs, Discuss. Math.
  • Graph Theory 31 (2011) 577-586. doi:10.7151/dmgt.1566[Crossref]
  • [12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719802[Crossref]
  • [13] T.A. McKee and E. Prisner, An approach to graph-theoretic homology, Combinatorics, Graph Theory and Algorithms Y. Alavi, et al. Eds, New Issues Press, Kalamazoo, MI (1999) 2 631-640.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_7151_dmgt_1757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.