Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
593-602
Opis fizyczny
Daty
wydano
2014-08-01
otrzymano
2012-01-06
poprawiono
2013-04-15
zaakceptowano
2013-08-22
online
2014-07-16
Twórcy
autor
- Departamento de Matemática Universidad Nacional de La Plata/ CONICET La Plata, Buenos Aires, Argentina
autor
- Department of Mathematics and Statistics Wright State University Dayton, Ohio 45435 USA
Bibliografia
- [1] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J. Discrete Math. 11 (1998) 437-455. doi:10.1137/S0895480193253415[Crossref]
- [2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796[Crossref]
- [3] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs: properties and characterizations, Discrete Appl. Math. 160 (2012) 2627-2635. doi:10.1016/j.dam.2012.02.022[WoS][Crossref]
- [4] P. De Caria and M. Gutierrez, On the correspondence between tree representations of chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014) 500-511. doi:10.1016/j.dam.2013.07.011[Crossref][WoS]
- [5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189. doi:10.1016/0012-365X(83)90154-1[Crossref]
- [6] T.A. McKee, How chordal graphs work, Bull. Inst. Combin. Appl. 9 (1993) 27-39.
- [7] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247. doi:10.1016/S0012-365X(99)00107-7[Crossref]
- [8] T.A. McKee, Subgraph trees in graph theory, Discrete Math. 270 (2003) 3-12. doi:10.1016/S0012-365X(03)00161-4[Crossref]
- [9] T.A. McKee, The neighborhood characteristic parameter for graphs, Electron. J. Combin. 10 (2003) #R20.
- [10] T.A. McKee, When fundamental cycles span cliques, Congr. Numer. 191 (2008) 213-218.
- [11] T.A. McKee, Simplicial and nonsimplicial complete subgraphs, Discuss. Math.
- Graph Theory 31 (2011) 577-586. doi:10.7151/dmgt.1566[Crossref]
- [12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719802[Crossref]
- [13] T.A. McKee and E. Prisner, An approach to graph-theoretic homology, Combinatorics, Graph Theory and Algorithms Y. Alavi, et al. Eds, New Issues Press, Kalamazoo, MI (1999) 2 631-640.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1757