PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 3 | 613-627
Tytuł artykułu

On Twin Edge Colorings of Graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph
Słowa kluczowe
Wydawca
Rocznik
Tom
34
Numer
3
Strony
613-627
Opis fizyczny
Daty
wydano
2014-08-01
otrzymano
2013-07-19
poprawiono
2013-09-13
zaakceptowano
2013-09-16
online
2014-07-16
Twórcy
autor
  • Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA
  • Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA
  • Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA
  • Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA
autor
  • Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA, ping.zhang@wmich.edu
Bibliografia
  • [1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001[Crossref]
  • [2] M. Anholcer, S. Cichacz and M. Milaniˇc, Group irregularity strength of connected graphs, J. Comb. Optim., to appear. doi:10.1007/s10878-013-9628-6[Crossref]
  • [3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
  • [4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition (Chapman & Hall/CRC, Boca Raton, FL, 2010).
  • [5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC, Boca Raton, FL, 2008). doi:10.1201/9781584888017[Crossref]
  • [6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6.
  • [7] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).
  • [8] S.W. Golomb, How to number a graph, in: Graph Theory and Computing R.C. Read (Ed.), (Academic Press, New York, 1972) 23-37.
  • [9] R. Jones, Modular and Graceful Edge Colorings of Graphs, Ph.D. Thesis, Western Michigan University (2011).
  • [10] R. Jones, K. Kolasinski, F. Fujie-Okamoto and P. Zhang, On modular edge-graceful graphs, Graphs Combin. 29 (2013) 901-912. doi:10.1007/s00373-012-1147-1[Crossref]
  • [11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput. 80 (2012) 445-455.
  • [12] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001[Crossref]
  • [13] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. Internat. Symposium Rome 1966 (Gordon and Breach, New York 1967) 349-355.
  • [14] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1756
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.