PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 3 | 547-558
Tytuł artykułu

Chromatic Polynomials of Mixed Hypercycles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We color the vertices of each of the edges of a C-hypergraph (or cohypergraph) in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph), we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic) or when they are all colored with distinct colors (rainbow). In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles
Słowa kluczowe
Wydawca
Rocznik
Tom
34
Numer
3
Strony
547-558
Opis fizyczny
Daty
wydano
2014-08-01
otrzymano
2013-01-09
poprawiono
2013-06-13
zaakceptowano
2013-06-13
online
2014-07-16
Twórcy
  • Department of Mathematics University of North Georgia Watkinsville, Georgia, USA, david.slutzky@ung.edu
Bibliografia
  • [1] J.A. Allagan, The chromatic polynomials of some linear uniform hypergraphs, Congr. Numer. 187 (2007) 156-160.[WoS]
  • [2] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
  • [3] A.A. Bhatti, S.A. Bokhary and I. Tomescu, On the chromaticity of multi-bridge hypergraphs, Graphs Combin. 25 (2009) 145-152. doi:10.1007/s00373-008-0831-7[Crossref]
  • [4] M. Borowiecki and E. Lazuka, On chromaticity of hypergraphs, Discrete Math. 307 (2007) 1418-1429. doi:10.1016/j.disc.2005.11.079[WoS][Crossref]
  • [5] M. Borowiecki and E. Lazuka, Chromatic polynomials of hypergraphs, Discuss. Math. Graph Theory 20 (2000) 293-301. doi:10.7151/dmgt.1128[Crossref]
  • [6] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs (Company Singapore: World Scientific Publishing., 2005).
  • [7] G. Lo Faro, L. Milazzo and A. Tripodi, On the upper and lower chromatic number of BSQSS(16), Electron. J. Combin. 8 (2001)#R6.
  • [8] M. Gionfriddo, L. Milazzo, A. Rosa and V. Voloshin, Bicolouring Steiner systems S(2, 4, v), Discrete Math. 283 (2004) 249-253. doi:10.1016/j.disc.2003.11.016[Crossref]
  • [9] D. Kr´al’, J. Kratochvil and H. Voss, Mixed hypercacti, Discrete Math. 286 (2004) 99-113. doi:10.1016/j.disc.2003.11.051[Crossref]
  • [10] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D.B. West, The chromatic spectrum of mixed hypergraphs, Graphs Combin. 18 (2002) 309-318. doi:10.1007/s003730200023[Crossref]
  • [11] L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems, Discrete Math. 174 (1997) 247-259. doi:10.1016/S0012-365X(97)80332-9[Crossref]
  • [12] L. Milazzo and Zs. Tuza, Strict colouring for classes of Steiner triple systems, Discrete Math. 182 (1998) 233-243. doi:10.1016/S0012-365X(97)00143-X[Crossref]
  • [13] L. Milazzo, Zs. Tuza and V. Voloshin, Strict coloring of triple and quadruple Steiner systems: a survey, Discrete Math. 261 (2003) 399-411. doi:10.1016/S0012-365X(02)00485-5[Crossref]
  • [14] L. Milazzo and Zs. Tuza, Logarithmic upper bound for upper chromatic number of S(t, t + 1, v) systems, Ars Combin. 92 (2009) 213-223.
  • [15] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory (B) 72 (1998) 229-235. doi:10.1006/jctb.1997.1811[WoS][Crossref]
  • [16] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993) 45-52.
  • [17] V.I. Voloshin, On the upper chromatic number of a hypergraph, Australas. J. Combin. 11 (1995) 25-45.
  • [18] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications (American Mathematical Society, Providence 2002).
  • [19] M.Walter, Some results on chromatic polynomials of hypergraphs, Electron. J. Combin. 16 (2009) #R94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1750
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.