Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let G = G1 ∪ G2 be the sum of two simple graphs G1,G2 having a common edge or G = G1 ∪ e1 ∪ e2 ∪ G2 be the sum of two simple disjoint graphs G1,G2 connected by two edges e1 and e2 which form a cycle C4 inside G. We give a method of computing the determinant det A(G) of the adjacency matrix of G by reducing the calculation of the determinant to certain subgraphs of G1 and G2. To show the scope and effectiveness of our method we give some examples
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
497-507
Opis fizyczny
Daty
wydano
2014-08-01
otrzymano
2012-10-30
poprawiono
2013-05-08
zaakceptowano
2013-05-08
online
2014-07-16
Twórcy
autor
- Mathematics and Computer Science Department University of Opole Oleska 48 45-052 Opole, Poland, badura@math.uni.opole.pl
Bibliografia
- [1] A. Abdollahi, Determinants of adjacency matrices of graphs, Trans. Combin. 1(4) (2012) 9-16.
- [2] F. Harary, The Determinant of the adjacency matrix of a graph, SIAM Rev. 4 (1961) 202-210. doi:10.1137/1004057[Crossref]
- [3] L. Huang and W. Yan, On the determinant of the adjacency matrix of a type of plane bipartite graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 931-938.
- [4] H.M. Rara, Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids, Discrete Math. 151 (1996) 213-219. doi:10.1016/0012-365X(94)00098-4[Crossref]
- [5] P. Wojtylak and S. Arworn, Paths of cycles and cycles of cycles, (2010) preprint.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1745