Department of Mathematics Trinity College Hartford, CT USA 06106
Bibliografia
[1] T.Y. Chang, Domination number of grid graphs, Ph.D. Thesis, (Department of Mathematics, University of South Florida, 1992).
[2] T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81-108. doi:10.1002/jgt.3190170110[Crossref]
[3] M.H. El-Zahar and R.S. Shaheen, On the domination number of the product of two cycles, Ars Combin. 84 (2007) 51-64.
[4] M.H. El-Zahar and R.S. Shaheen, The domination number of C8 □Cn and C9 □Cn, J. Egyptian Math. Soc. 7 (1999) 151-166.
[5] D. Gon¸calves, A. Pinlou, M. Rao and S. Thomass´e, The domination number of grids, SIAM J. Discrete Math. 25 (2011) 1443-1453. doi:10.1137/11082574[Crossref][WoS]
[6] F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27-28. doi:10.1016/0893-9659(93)90027-K[Crossref]
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998).
[8] M.S. Jacobson and L.F. Kinch, On the domination number of the products of graphs I, Ars Combin. 18 (1983) 33-44.
[9] S. Klavˇzar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W[Crossref]
[10] K.-J. Pai and W.-J. Chiu, A note on ”On the power dominating set of hypercubes”, in: Proceedings of the 29th Workshop on Combinatorial Mathematics and Comput- ing Theory, National Taipei College of Business, Taipei, Taiwan April 27-28, (2012) 65-68.
[11] R.S. Shaheen, On the domination number of m × n toroidal grid graphs, Congr. Numer. 146 (2000) 187-200.
[12] V.G Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk, 23 (6 (144)) (1968) 117-134.
[13] V.G Vizing, The Cartesian product of graphs, Vy˘cisl. Sistemy 9 (1963) 30-43.
[14] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001)