PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 1 | 95-102
Tytuł artykułu

The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PKm,ω (m ≥ 1) satisfies [...] More precisely, for m > 1, μ satisfies the equation [...] where [...] and [...] . At last the spectral radius μ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.
Wydawca
Rocznik
Tom
34
Numer
1
Strony
95-102
Opis fizyczny
Daty
wydano
2014-02-01
online
2014-02-14
Twórcy
autor
  • College of Mathematics and Information Science Jiangxi Normal University Nanchang, 330022, P.R. China, suli@jxnu.edu.cn
autor
  • College of Mathematics and Information Science Jiangxi Normal University Nanchang, 330022, P.R. China, lhh@mail.ustc.edu.cn
autor
  • College of Mathematics and Information Science Jiangxi Normal University Nanchang, 330022, P.R. China, zhangjing3611@163.com
Bibliografia
  • [1] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. (B) 17 (2002) 371-376. doi:10.1007/s11766-002-0017-7[Crossref]
  • [2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171. doi:10.1016/j.laa.2007.01.009[WoS][Crossref]
  • [3] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian I, Publ. Inst. Math. (Beograd) 99 (2009) 19-33.
  • [4] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian II, Linear Algebra Appl. 432 (2010) 2257-2272. doi:10.1016/j.laa.2009.05.020[Crossref]
  • [5] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272. doi:10.1016/S0024-3795(03)00483-X[Crossref]
  • [6] W. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004) 199-211. doi:10.1016/S0195-6698(03)00100-8[Crossref]
  • [7] B. Mohar and W. Woess, A survey on spectra of infnite graphs, Bull. London Math. Soc. 21 (1989) 209-234. doi:10.1112/blms/21.3.209[Crossref]
  • [8] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736-741. doi:10.1016/j.laa.2006.12.005[Crossref][WoS]
  • [9] D. Stevanović and P. Hansen, The minimum spectral radius of graphs with a given clique number , Electron. J. Linear Algebra 17 (2008) 110-117.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1718
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.