PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 33 | 1 | 91-99
Tytuł artykułu

Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have been widely studied. In particular, the problem of acyclic colourings of graphs with bounded maximum degree has been investigated. In 2011, Kostochka and Stocker showed that any graph with maximum degree 5 can be acyclically coloured with at most 7 colours. The question, whether this bound is achieved, remains open. In this note we prove that any graph with maximum degree 5 and maximum average degree at most 4 admits an acyclic 6-colouring. We also provide examples of graphs with these properties.
Wydawca
Rocznik
Tom
33
Numer
1
Strony
91-99
Opis fizyczny
Daty
wydano
2013-03-01
online
2013-04-13
Twórcy
  • Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra Z. Szafrana 4a, 65-516 Zielona Góra, Poland, A.Fiedorowicz@wmie.uz.zgora.pl
Bibliografia
  • [1] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236. doi:10.1016/0012-365X(79)90077-3[Crossref][WoS]
  • [2] O.V. Borodin, A.V. Kostochka and D.R.Woodall, Acyclic colorings of planar graphs with large girth, J. Lond. Math. Soc. 60 (1999) 344-352. doi:10.1112/S0024610799007942[Crossref]
  • [3] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobˇsˇc. Akad. Gruzin. SSR 93 (1979) 21-24 (in Russian).
  • [4] G. Fertin and A. Raspaud, Acyclic coloring of graphs of maximum degree five: Nine colors are enough, Inform. Process. Lett. 105 (2008) 65-72. doi:10.1016/j.ipl.2007.08.022[Crossref][WoS]
  • [5] B. Grünbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716[Crossref]
  • [6] A.V. Kostochka, Upper bounds of chromatic functions of graphs, Ph.D. Thesis, Novosibirsk, 1978 (in Russian).
  • [7] A.V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7- colorable, Ars Math. Contemp. 4 (2011) 153-164.
  • [8] S. Skulrattanakulchai, Acyclic colorings of subcubic graphs, Inform. Process. Lett. 92 (2004) 161-167. doi:10.1016/j.ipl.2004.08.002[Crossref]
  • [9] D. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, 2001).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_7151_dmgt_1665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.