Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 33 | 1 | 217-229

Tytuł artykułu

Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Significant values of a combinatorial count need not fit the recurrence for the count. Consequently, initial values of the count can much outnumber those for the recurrence. So is the case of the count, Gl(n), of distance-l independent sets on the cycle Cn, studied by Comtet for l ≥ 0 and n ≥ 1 [sic]. We prove that values of Gl(n) are nth power sums of the characteristic roots of the corresponding recurrence unless 2 ≤ n ≤ l. Lucas numbers L(n) are thus generalized since L(n) is the count in question if l = 1. Asymptotics of the count for 1 ≤ l ≤ 4 involves the golden ratio (if l = 1) and three of the four smallest Pisot numbers inclusive of the smallest of them, plastic number, if l = 4. It is shown that the transition from a recurrence to an OGF, or back, is best presented in terms of mutually reciprocal (shortly: coreciprocal) polynomials. Also the power sums of roots (i.e., moments) of a polynomial have the OGF expressed in terms of the co-reciprocal polynomial.

Wydawca

Rocznik

Tom

33

Numer

1

Strony

217-229

Opis fizyczny

Daty

wydano
2013-03-01
online
2013-04-13

Twórcy

  • AGH Kraków al. Mickiewicza 30, 30–059 Kraków, Poland

Bibliografia

  • [1] G.E. Andrews, A theorem on reciprocal polynomials with applications to permutations and compositions, Amer. Math. Monthly 82 (1975) 830-833. doi:10.2307/2319803[Crossref]
  • [2] C. Berge, Principes de combinatoire (Dunod, Paris, 1968). (English transl.: Principles of Combinatorics (Acad. Press, New York and London, 1971).
  • [3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.P. Schreiber, Pisot and Salem Numbers (Birkhauser, Basel, 1992).[WoS]
  • [4] L. Comtet, Advanced Combinatorics. The art of Finite and Infinite Expansions (D. Reidel, Dordrecht, 1974). (French original: Analyse combinatoire, vol. I, II (Presses Univ. France, Paris, 1970).
  • [5] Ph. Flajolet and R. Sedgewick, Analytic Combinatorics (Cambridge Univ. Press, 2009). http://algo.inria.fr/flajolet/Publications/books.html
  • [6] I. Kaplansky, Solution of the “Probleme des ménages”, Bull. Amer. Math. Soc. 49 (1943) 784-785. doi:10.1090/S0002-9904-1943-08035-4[Crossref]
  • [7] M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) 139-146.
  • [8] W. Lang, A196837: Ordinary generating functions for sums of powers of the first n positive integers, (2011). http://www-itp.particle.uni-karlsruhe.de/~wl
  • [9] T. Muir, Note on selected combinations, Proc. Roy. Soc. Edinburgh 24 (1901-2) 102-104.
  • [10] H. Prodinger and R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16-21.
  • [11] Z. Skupień, On sparse hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles, Electron. Notes Discrete Math. 24 (2006) 231-235. doi:10.1016/j.endm.2006.06.032[Crossref]
  • [12] Z. Skupień, Sparse hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles, Discrete Math. 309 (2009) 6382-6390. doi:10.1016/j.disc.2008.11.003[WoS][Crossref]
  • [13] Z. Skupień, Multi-compositions in exponential counting of hypohamiltonian graphs and/or snarks, manuscript (2009).
  • [14] Z. Skupień, Generating Girard-Newton-Waring’s moments of mutually reciprocal polynomials, manuscript (2012).
  • [15] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, OEIS (2007). www.research.att.com/~njas/sequences/
  • [16] R.P. Stanley, Enumerative Combinatorics, vol. 1 (Cambridge Univ. Press, 1997). doi:10.1017/CBO9780511805967[Crossref]
  • [17] Wikipedia, Pisot-Vijayaraghavan number, (2012). http://en.wikipedia.org/wiki/Pisot-Vijayaraghavan_number (as of 2012.03.30)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_7151_dmgt_1658
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.