PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 67 | 1 | 45-56
Tytuł artykułu

Linearly-invariant families and generalized Meixner–Pollaczek polynomials

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extremal functions f0(z) realizing the maxima of some functionals (e.g. max |a3|, and max arg f′(z)) within the so-called universal linearly invariant family Uα (in the sense of Pommerenke [10]) have such a form that f′0(z) looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials Pλn (x; θ,ψ) of a real variable x as coefficients of [###] where the parameters λ, θ, ψ satisfy the conditions: λ > 0, θ ∈ (0, π), ψ ∈ R. In the case ψ =− θ we have the well-known (MP) polynomials. The cases ψ = π − θ and ψ = π + θ leads to new sets of polynomials which we call quasi-Meixner-Pollaczek polynomials and strongly symmetric Meixner-Pollaczek polynomials. If x = 0, then we have an obvious generalization of the Gegenbauer polynomials. The properties of (GMP) polynomials as well as of some families of holomorphic functions |z| < 1 defined by the Stieltjes-integral formula, where the function zGλ(x; θ,ψ; z) is a kernel, will be discussed.
Wydawca
Rocznik
Tom
67
Numer
1
Strony
45-56
Opis fizyczny
Daty
wydano
2013-06-01
online
2013-06-15
Twórcy
  • Department of Mathematics Faculty of Economics Maria Curie-Skłodowska University 20-031 Lublin Poland, inaraniecka@gmail.com
autor
  • Department of Mathematics Faculty of Economics Maria Curie-Skłodowska University 20-031 Lublin Poland, antatarczak@gmail.com
Bibliografia
  • [1] Araaya, T. K., The symmetric Meixner-Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
  • [2] Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
  • [3] Duren, P. L., Univalent Functions, Springer, New York, 1983.
  • [4] Erd´elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher TranscendentalFunctions, vol. I, McGraw-Hill Book Company, New York, 1953.
  • [5] Golusin, G., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I., 1969.
  • [6] Ismail, M., On sieved ultraspherical polynomials I: Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), 1093-1113.
  • [7] Kiepiela, K., Naraniecka, I., Szynal, J., The Gegenbauer polynomials and typicallyreal functions, J. Comp. Appl. Math 153 (2003), 273-282.
  • [8] Koekoek, R., Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonalpolynomials and its q-analogue, Report 98-17, Delft University of Technology, 1998.
  • [9] Koornwinder, T. H., Meixner-Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (4) (1989), 767-769.[Crossref]
  • [10] Pommerenke, Ch., Linear-invariant Familien analytischer Funktionen, Mat. Ann. 155 (1964), 108-154.
  • [11] Poularikas, A. D., The Mellin Transform, The Handbook of Formulas and Tables forSignal Processing, CRC Press LLC, Boca Raton, 1999.
  • [12] Robertson, M. S., On the coefficients of typically-real functions, Bull. Amer. Math. Soc. 41 (1935), 565-572.
  • [13] Rogosinski, W. W., ¨ Uber positive harmonische Entwicklungen und typisch-reellePotenzreihen, Math. Z. 35 (1932), 93-121.[Crossref]
  • [14] Starkov, V. V., The estimates of coefficients in locally-univalent family U′α, Vestnik Lenin. Gosud. Univ. 13 (1984), 48-54 (Russian).
  • [15] Starkov, V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1989, 1-287 (Russian).
  • [16] Szynal, J., An extension of typically-real functions, Ann. Univ. Mariae Curie- Skłodowska, Sect. A 48 (1994), 193-201.
  • [17] Szynal, J., Waniurski, J., Some problems for linearly invariant families, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 30 (1976), 91-102.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10062-012-0021-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.