PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 62 | 1 | 123-142
Tytuł artykułu

Uniqueness problem of meromorphic mappings with few targets

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of Cm into CPn.
Rocznik
Tom
62
Numer
1
Strony
123-142
Opis fizyczny
Daty
wydano
2008-01-01
online
2009-02-09
Twórcy
autor
  • Department of Mathematics, Hanoi National University of Education, 136-Xuan Thuy street, Cau Giay, Hanoi Vietnam
autor
  • Department of Mathematics, Hanoi National University of Education, 136-Xuan Thuy street, Cau Giay, Hanoi Vietnam
Bibliografia
  • Aihara, Y., Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61.
  • Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, Nagoya Math. J. 181 (2006), 75-101.
  • Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 217-242.[WoS]
  • Dethloff, G., Tan, T. V., An extension of uniqueness theorems for meromorphic mappings, Vietnam J. Math. 34 (2006), 71-94.
  • Fujimoto, H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23.
  • Fujimoto, H., Nonintegrated defect relation for meromorphic maps of complete Kähler manifolds intoPN1 (C) X ··· X PNκ (C), Japan. J. Math. (N. S.) 11 (1985), 233-264.
  • Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152.
  • Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161-188.
  • Ji, S., Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348.
  • Lang, S., Algebra, Third Edition, Addison-Wesley, 1993.
  • Nevanlinna, R., Einige Eideutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391.
  • Noguchi, J., Ochiai, T., Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr. 80, Amer. Math. Soc., Providence, Rhode Island, 1990.
  • Ru, M., A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707.
  • Smiley, L., Geometric conditions for unicity of holomorphic curves, Contemp. Math. 25 (1983), 149-154.
  • Thai, D. D., Quang, S. D., Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, Internat. J. Math. 17 (2006), 1223-1257.
  • Thai, D. D., Tan, T. V., Uniqueness problem of meromorphic mappings for moving hypersurfaces, preprint.
  • Stoll, W., Introduction to value distribution theory of meromorphic maps, Complex analysis (Trieste, 1980), Lecture Notes in Math., 950, Springer, Berlin-New York, 1982, 210-359.
  • Stoll, W., Value distribution theory for meromorphic maps, Aspects of Mathematics, E 7 Friedr. Vieweg & Sohn, Braunschweig, 1985.
  • Stoll, W., On the propagation of dependences, Pacific J. of Math., 139 (1989), 311-337.
  • Ye, Z., A unicity theorem for meromorphic mappings, Houston J. Math. 24 (1998), 519-531.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10062-008-0014-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.