Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Jean-Marc Richard observed in [7] that maximal perimeter of a parallelogram inscribed in a given ellipse can be realized by a parallelogram with one vertex at any prescribed point of ellipse. Alain Connes and Don Zagier gave in [4] probably the most elementary proof of this property of ellipse. Another proof can be found in [1]. In this note we prove that closed, convex curves having circles as π/2-isoptics have the similar property.
Słowa kluczowe
Rocznik
Tom
Numer
Strony
105-111
Opis fizyczny
Daty
wydano
2008-01-01
online
2009-02-09
Twórcy
autor
- Institute of Mathematics, M. Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland
Bibliografia
- Berger, M., Geometrie, Vol. 2, Nathan, Paris, 1990.
- Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a strictly convex curve, Global Differential Geometry and Global Analysis, 1990 (Berlin), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.
- Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a strictly convex curve II, Rend. Sem. Mat. Univ. Padova 96 (1996), 37-49.
- Connes, A., Zagier, D., A property of parallelograms inscribed in ellipses, Amer. Math. Monthly 114 (2007), 909-914.
- Green, J. W., Sets subtending a constant angle on a circle, Duke Math. J. 17 (1950), 263-267.
- Matsuura, S., On nonconvex curves of constant angle, Functional analysis and related topics, 1991 (Kyoto), Lecture Notes in Math., 1540, Springer, Berlin, 1993, 251-268.
- Richard, J-M., Safe domain and elementary geometry, Eur. J. Phys. 25 (2004), 835-844.[Crossref]
- Wunderlich, W., Kurven mit isoptischem Kreis, Aequationes Math. 6 (1971), 71-78.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10062-008-0012-4