Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 20 | 4 | 275-280

Tytuł artykułu

Free ℤ-module

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this article we formalize a free ℤ-module and its rank. We formally prove that for a free finite rank ℤ-module V , the number of elements in its basis, that is a rank of the ℤ-module, is constant regardless of the selection of its basis. ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theorems in this article are described by translating theorems in [21] and [8] into theorems of Z-module.

Słowa kluczowe

Wydawca

Rocznik

Tom

20

Numer

4

Strony

275-280

Opis fizyczny

Daty

wydano
2012-12-01
online
2013-02-02

Twórcy

autor
  • Shinshu University, Nagano, Japan
  • Shinshu University, Nagano, Japan
  • Shinshu University, Nagano, Japan

Bibliografia

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  • [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [8] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. FormalizedMathematics, 6(3):411-415, 1997.
  • [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  • [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012, doi: 10.2478/v10037-012-0007-z.[Crossref]
  • [11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012, doi: 10.2478/v10037-012-0024-y.[Crossref]
  • [12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
  • [13] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
  • [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
  • [15] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002.
  • [16] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.
  • [17] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
  • [18] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
  • [19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
  • [20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  • [21] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
  • [22] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
  • [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
  • [24] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
  • [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  • [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  • [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_v10037-012-0033-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.