PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 20 | 2 | 175-179
Tytuł artykułu

Extended Euclidean Algorithm and CRT Algorithm

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we formalize some number theoretical algorithms, Euclidean Algorithm and Extended Euclidean Algorithm [9]. Besides the a gcd b, Extended Euclidean Algorithm can calculate a pair of two integers (x, y) that holds ax + by = a gcd b. In addition, we formalize an algorithm that can compute a solution of the Chinese remainder theorem by using Extended Euclidean Algorithm. Our aim is to support the implementation of number theoretic tools. Our formalization of those algorithms is based on the source code of the NZMATH, a number theory oriented calculation system developed by Tokyo Metropolitan University [8].
Słowa kluczowe
Wydawca
Rocznik
Tom
20
Numer
2
Strony
175-179
Opis fizyczny
Daty
wydano
2012-12-01
online
2013-02-02
Twórcy
  • Shinshu University, Nagano, Japan
autor
  • Shinshu University, Nagano, Japan
  • Shinshu University, Nagano, Japan
Bibliografia
  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  • [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [7] Czesław Bylinski. The sum and product of finite sequences of real numbers. FormalizedMathematics, 1(4):661-668, 1990.
  • [8] NZMATH development Group. http://tnt.math.se.tmu.ac.jp/nzmath/.
  • [9] Donald E. Knuth. Art of Computer Programming. Volume 2: Seminumerical Algorithms, 3rd Edition, Addison-Wesley Professional, 1997.
  • [10] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
  • [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
  • [12] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  • [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10037-012-0020-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.