Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Formalized Mathematics

2012 | 20 | 2 | 175-179

## Extended Euclidean Algorithm and CRT Algorithm

EN

### Abstrakty

EN
In this article we formalize some number theoretical algorithms, Euclidean Algorithm and Extended Euclidean Algorithm [9]. Besides the a gcd b, Extended Euclidean Algorithm can calculate a pair of two integers (x, y) that holds ax + by = a gcd b. In addition, we formalize an algorithm that can compute a solution of the Chinese remainder theorem by using Extended Euclidean Algorithm. Our aim is to support the implementation of number theoretic tools. Our formalization of those algorithms is based on the source code of the NZMATH, a number theory oriented calculation system developed by Tokyo Metropolitan University [8].

175-179

wydano
2012-12-01
online
2013-02-02

### Twórcy

autor
• Shinshu University, Nagano, Japan
autor
• Shinshu University, Nagano, Japan
autor
• Shinshu University, Nagano, Japan

### Bibliografia

• [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
• [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
• [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
• [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
• [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
• [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
• [7] Czesław Bylinski. The sum and product of finite sequences of real numbers. FormalizedMathematics, 1(4):661-668, 1990.
• [8] NZMATH development Group. http://tnt.math.se.tmu.ac.jp/nzmath/.
• [9] Donald E. Knuth. Art of Computer Programming. Volume 2: Seminumerical Algorithms, 3rd Edition, Addison-Wesley Professional, 1997.
• [10] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
• [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
• [12] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
• [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.