PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Formalized Mathematics

2011 | 19 | 3 | 193-203
Tytuł artykułu

### Free Interpretation, Quotient Interpretation and Substitution of a Letter with a Term for First Order Languages

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fourth of a series of articles laying down the bases for classical first order model theory. This paper supplies a toolkit of constructions to work with languages and interpretations, and results relating them. The free interpretation of a language, having as a universe the set of terms of the language itself, is defined.The quotient of an interpreteation with respect to an equivalence relation is built, and shown to remain an interpretation when the relation respects it. Both the concepts of quotient and of respecting relation are defined in broadest terms, with respect to objects as general as possible.Along with the trivial symbol substitution generally defined in [11], the more complex substitution of a letter with a term is defined, basing right on the free interpretation just introduced, which is a novel approach, to the author's knowledge. A first important result shown is that the quotient operation commute in some sense with term evaluation and reassignment functors, both introduced in [13] (theorem 3, theorem 15). A second result proved is substitution lemma (theorem 10, corresponding to III.8.3 of [15]). This will be vital for proving satisfiability theorem and correctness of a certain sequent derivation rule in [14]. A third result supplied is that if two given languages coincide on the letters of a given FinSequence, their evaluation of it will also coincide. This too will be instrumental in [14] for proving correctness of another rule. Also, the Depth functor is shown to be invariant with respect to term substitution in a formula.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
193-203
Opis fizyczny
Daty
wydano
2011-01-01
online
2012-04-26
Twórcy
autor
• Mathematics Department "G. Castelnuovo", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
Bibliografia
• Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
• Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
• Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
• Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
• Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
• Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
• Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
• Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
• Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
• Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
• Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011, doi: 10.2478/v10037-011-0025-2.[Crossref]
• Marco B. Caminati. Definition of first order language with arbitrary alphabet. Syntax of terms, atomic formulas and their subterms. Formalized Mathematics, 19(3):169-178, 2011, doi: 10.2478/v10037-011-0026-1.[Crossref]
• Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011, doi: 10.2478/v10037-011-0027-0.[Crossref]
• Marco B. Caminati. Sequent calculus, derivability, provability. Gödel's completeness theorem. Formalized Mathematics, 19(3):205-222, 2011, doi: 10.2478/v10037-011-0029-y.[Crossref]
• H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer, 1994.
• Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
• Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
• Krzysztof Retel. Properties of first and second order cutting of binary relations. Formalized Mathematics, 13(3):361-365, 2005.
• Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
• Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
• Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
• Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
• Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
• Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
• Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
Typ dokumentu
Bibliografia
Identyfikatory