In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Ryszard Engelking. Teoria wymiaru. PWN, 1981.
[11] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.[Crossref]
[15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.