PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 17 | 2 | 173-178
Tytuł artykułu

Probability on Finite and Discrete Set and Uniform Distribution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A pseudorandom number generator plays an important role in practice in computer science. For example: computer simulations, cryptology, and so on. A pseudorandom number generator is an algorithm to generate a sequence of numbers that is indistinguishable from the true random number sequence. In this article, we shall formalize the "Uniform Distribution" that is the idealized set of true random number sequences. The basic idea of our formalization is due to [15].
Słowa kluczowe
Wydawca
Rocznik
Tom
17
Numer
2
Strony
173-178
Opis fizyczny
Daty
wydano
2009-01-01
online
2009-07-14
Twórcy
  • Shinshu University, Nagano, Japan
Bibliografia
  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  • [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  • [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
  • [12] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
  • [13] Jan Popiołek. Introduction to probability. Formalized Mathematics, 1(4):755-760, 1990.
  • [14] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004.
  • [15] Victor Shoup. A computational introduction to number theory and algebra. Cambridge University Press, 2008.
  • [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  • [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
  • [19] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. Formalized Mathematics, 14(3):101-108, 2006, doi:10.2478/v10037-006-0012-1.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10037-009-0020-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.