Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Formalized Mathematics

2009 | 17 | 1 | 37-42

## Cell Petri Net Concepts

EN

### Abstrakty

EN
Based on the Petri net definitions and theorems already formalized in [8], with this article, we developed the concept of "Cell Petri Nets". It is based on [9]. In a cell Petri net we introduce the notions of colors and colored states of a Petri net, connecting mappings for linking two Petri nets, firing rules for transitions, and the synthesis of two or more Petri nets.MML identifier: PETRI 2, version: 7.11.01 4.117.1046

37-42

wydano
2009-01-01
online
2009-03-20

### Twórcy

autor
• Chiba-ken Asahi-shi, Kotoda 2927-13 289-2502 Japan
autor
• Shinshu University, Nagano, Japan
autor
• Shinshu University, Nagano, Japan
autor
• Shinshu University, Nagano, Japan

### Bibliografia

• [1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
• [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
• [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
• [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
• [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
• [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
• [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
• [8] Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic Petri net concepts. Formalized Mathematics, 3(2):183-187, 1992.
• [9] Pauline N. Kawamoto and Yatsuka Nakamura. On Cell Petri Nets. Journal of Applied Functional Analysis, 1996.
• [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
• [11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
• [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
• [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
• [14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.