Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 16 | 2 | 203-205

Tytuł artykułu

Ramsey's Theorem

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The goal of this article is to formalize two versions of Ramsey's theorem. The theorems are not phrased in the usually pictorial representation of a coloured graph but use a set-theoretic terminology. After some useful lemma, the second section presents a generalization of Ramsey's theorem on infinite set closely following the book [9]. The last section includes the formalization of the theorem in a more known version (see [1]).MML identifier: RAMSEY 1, version: 7.9.01 4.101.1015

Wydawca

Rocznik

Tom

16

Numer

2

Strony

203-205

Daty

wydano
2008-01-01
online
2009-03-20

Twórcy

  • Casella Postale 49 54038 Montignoso, Italy

Bibliografia

  • [1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004.
  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  • [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  • [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
  • [9] T. J. Jech. Set Theory. Springer-Verlag, Berlin Heidelberg New York, 2002.
  • [10] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  • [11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
  • [12] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
  • [13] Marco Riccardi. The sylow theorems. Formalized Mathematics, 15(3):159-165, 2007.
  • [14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  • [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_v10037-008-0026-y