Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property.MML identifier: HELLY, version: 7.8.09 4.97.1001
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
91-96
Opis fizyczny
Daty
wydano
2008-01-01
online
2009-03-20
Twórcy
autor
- University of Alberta, Edmonton, Canada
autor
- University of Alberta, Edmonton, Canada
Bibliografia
- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [5] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
- [6] Gilbert Lee. Trees and graph components. Formalized Mathematics, 13(2):271-277, 2005.
- [7] Gilbert Lee. Walks in graphs. Formalized Mathematics, 13(2):253-269, 2005.
- [8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.
- [9] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
- [10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [11] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10037-008-0013-3