Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 15 | 3 | 111-119

Tytuł artykułu

Definition and some Properties of Information Entropy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this article we mainly define the information entropy [3], [11] and prove some its basic properties. First, we discuss some properties on four kinds of transformation functions between vector and matrix. The transformation functions are LineVec2Mx, ColVec2Mx, Vec2DiagMx and Mx2FinS. Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows of the given matrix as finite sequences, yielding a new finite sequence by horizontally joining each row of the given matrix in order to index. Then we define each concept of information entropy for a probability sequence and two kinds of probability matrices, joint and conditional, that are defined in article [25]. Further, we discuss some properties of information entropy including Shannon's lemma, maximum property, additivity and super-additivity properties.

Słowa kluczowe

Wydawca

Rocznik

Tom

15

Numer

3

Strony

111-119

Opis fizyczny

Daty

wydano
2007-01-01
online
2008-06-09

Twórcy

autor
  • Shinshu University, Nagano, Japan
  • Shinshu University, Nagano, Japan

Bibliografia

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [3] P. Billingsley. Ergodic Theory and Information. John Wiley & Sons, 1964.
  • [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
  • [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  • [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  • [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  • [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
  • [11] Shigeichi Hirasawa. Information Theory. Baifukan CO., 1996.
  • [12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
  • [13] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
  • [14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
  • [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  • [16] Yatsuka Nakamura, Nobuyuki Tamaura, and Wenpai Chang. A theory of matrices of real elements. Formalized Mathematics, 14(1):21-28, 2006.
  • [17] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
  • [18] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
  • [19] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
  • [20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
  • [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
  • [22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  • [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  • [25] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. Formalized Mathematics, 14(3):101-108, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_v10037-007-0012-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.