Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Formalized Mathematics

2006 | 14 | 4 | 161-169

## The Quaternion Numbers

EN

### Abstrakty

EN
In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = <x,y,w,z> where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = ℜ(q), y = ℑ1(q), w = ℑ2(q), z = ℑ3(q). We define the addition, difference, multiplication again and denote this operation by real and three imaginary parts. We define the conjugate of q denoted by q*' and the absolute value of q denoted by |q|. We also give some properties of quaternion numbers.

161-169

wydano
2006-01-01
online
2008-06-13

### Twórcy

autor
• Qingdao University of Science and Technology, China
autor
• Qingdao University of Science and Technology, China

### Bibliografia

•  Grzegorz Bancerek. Arithmetic of non-negative rational numbers. To appear in Formalized Mathematics.
•  Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
•  Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
•  Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
•  Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
•  Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
•  Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
•  Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
•  Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
•  Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
•  Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
•  Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
•  Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
•  Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
•  Andrzej Trybulec. and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
•  Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
•  Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
•  Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

### Identyfikatory JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.