Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• Artykuł - szczegóły

Formalized Mathematics

2006 | 14 | 4 | 161-169

The Quaternion Numbers

EN

Abstrakty

EN
In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = <x,y,w,z> where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = ℜ(q), y = ℑ1(q), w = ℑ2(q), z = ℑ3(q). We define the addition, difference, multiplication again and denote this operation by real and three imaginary parts. We define the conjugate of q denoted by q*' and the absolute value of q denoted by |q|. We also give some properties of quaternion numbers.

161-169

wydano
2006-01-01
online
2008-06-13

Twórcy

autor
• Qingdao University of Science and Technology, China
autor
• Qingdao University of Science and Technology, China

Bibliografia

• [1] Grzegorz Bancerek. Arithmetic of non-negative rational numbers. To appear in Formalized Mathematics.
• [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
• [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
• [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
• [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
• [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
• [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
• [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
• [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
• [10] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
• [11] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
• [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
• [13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
• [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
• [15] Andrzej Trybulec. and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
• [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
• [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
• [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.