Warianty tytułu
Języki publikacji
Abstrakty
In 1985, V. G. Pestov described a neighborhood base at the identity of free topological groups on a Tychonoff space in terms of the elements of the fine uniformity on the Tychonoff space. In this paper, we extend Postev’s description to the free paratopological groups where we introduce a neighborhood base at the identity of free paratopological groups on any topological space in terms of the elements of the fine quasiuniformity on the space.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Strony
31-36
Opis fizyczny
Daty
otrzymano
2013-04-10
zaakceptowano
2013-10-01
online
2013-11-12
Twórcy
autor
- Department of Mathematics, University of Zawia, Zawia, Libya, a.elfard@yahoo.com
Bibliografia
- [1] A. S. Elfard, and P. Nickolas, On the topology of free paratopological groups. II, Topology Appl., vol. 160, no. 1(2013), pp. 220-229.
- [2] A. S. Elfard, Free paratopological groups, (submitted 2013).
- [3] P. Fletcher, and W. F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematic, MarcelDekker Inc., New York, vol. 77 (1982), pp. viii+216.
- [4] J. Marin, and S. Romaguera, A bitopological view of quasi-topological groups, Indian J. Pure Appl. Math. 27 (1996),393–405.
- [5] V. G. Pestov, Neighborhoods of identity in free topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1985),no.3, 8–10, 101.
- [6] M. G. Tkacenko, On topologies of free groups, Czechoslovak Mathematical Journal, vol. 34, no. 4, (1984), pp. 541–551,
- [7] K. Yamada, Characterizations of a metrizable space X such that every An(X) is a k-space, Topology Appl., Topologyand its Applications, vol. 49, (1993), 1, pp. 75–94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_taa-2013-0004