PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 9-21
Tytuł artykułu

Operator inequalities of Jensen type

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present some generalized Jensen type operator inequalities involving sequences of self-adjoint operators. Among other things, we prove that if f : [0;1) → ℝ is a continuous convex function with f(0) ≤ 0, then [...] for all operators Ci such that [...] (i=1 , ... , n) for some scalar M ≥ 0, where [...] and [...]
Wydawca
Rocznik
Tom
1
Strony
9-21
Opis fizyczny
Daty
zaakceptowano
2012-03-18
otrzymano
2012-10-07
online
2013-07-06
Twórcy
  • Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran, moslehian@um.ac.ir
autor
  • Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia, jmicic@fsb.hr
autor
  • Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran, kian@member.ams.org
Bibliografia
  • [1] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann. 315 (1999), 771-780.
  • [2] K. M.R. Audenaert and J.S. Aujla On norm sub-additivity and super-additivity inequalities for concave and convexfunctions , arXiv:1012.2254v2.[WoS]
  • [3] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities, Zagreb, Element, 2005.
  • [4] M. Kian and M.S. Moslehian, Operator inequalities related to Q-class functions, Math. Slovaca, (to appear).
  • [5] A. Matkovic, J. Pecaric and I. Peric, A variant of Jensen’s inequality of Mercer’s type for operators with applications, Linear Algebra Appl. 418 (2006), 551-564.
  • [6] J. Micic, Z. Pavic and J. Pecaric, Jensen’s inequality for operators without operator convexity, Linear Algebra Appl. 434 (2011), 1228-1237.[WoS]
  • [7] J. Micic, J. Pecaric and J. Peric, Refined Jensen’s operator inequality with condition on spectra, Oper. Matrices 7 (2013), 293-308.[WoS][Crossref]
  • [8] M.S. Moslehian, Operator extensions of Hua’s inequality, Linear Algebra Appl. 430 (2009), no. 4, 1131-1139.[WoS]
  • [9] M.S. Moslehian, J. Micic and M. Kian, An operator inequality and its consequences, Linear Algebra Appl. DOI: 10.1016/j.laa.2012.08.005.[Crossref][WoS]
  • [10] M.S. Moslehian and H. Najafi. Around operator monotone functions, Integral Equations Operator Theory 71 (2011), 575-582.
  • [11] M. Uchiyama, Subadditivity of eigenvalue sums, Proc. Amer. Math. Soc. 134 (2006), 1405-1412.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_taa-2013-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.