Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2013 | 1 | 42-48

Tytuł artykułu

An approach based on matrix polynomials for linear systems of partial differential equations

Treść / Zawartość

Warianty tytułu

Języki publikacji



In this paper, an approach based on matrix polynomials is introduced for solving linear systems of partial differential equations. The main feature of the proposed method is the computation of the Smith canonical form of the assigned matrix polynomial to the linear system of PDEs, which leads to a reduced system. It will be shown that the reduced one is an independent system of PDEs having only one unknown in each equation. A comparison of the results for several test problems reveals that the method is very effective and convenient. The basic idea described in this paper can be employed to solve other linear functional systems.








Opis fizyczny




  • [1] M.S. Boudellioua and A. Quadrat, Serre 0s reduction of linear functional systems, Math. Comput. Sci. 4 (2010), 289–312.
  • [2] M.V. Bulatov and M.G. Lee, Application of matrix polynomials to the analysis of linear differential-algebraic equations of higher order, Differ. Equ. 44 (2008), 1353–1360. [WoS]
  • [3] T. M. Elzaki and S.M. Elzaki, On the Elzaki transform and system of partial differential equations, Adv. Theor. Appl. Math. 6 (2011), 115–123.
  • [4] M.G. Frost and C. Storey, Equivalence of a matrix over R[s; z] with its Smith form, Internat. J. Control 28 (1978), 665–671.
  • [5] M.G. Frost and M.S. Boudellioua, Some further results concerning matrices with elements in a polynomial ring, Int. J. Control 43 (1986), 1543–1555.
  • [6] F.R. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, 1960.
  • [7] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
  • [8] J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals 30 (2006), 700– 708.
  • [9] T. Kailath, Linear Systems, Englewood Cliffs, Prentice Hall, 1980.
  • [10] V. N. Kublanovskaya, On some factorizations of two parameter polynomail matrices, J. Math. Sci. 86 (1997), 2866– 2879.
  • [11] R.C. McOwen, Partial Differential Equations: Methods and Applications, Prentice Hall, Upper Saddle River, 2002.
  • [12] W.H. Neven and C. Praagman, Column reduction of polynomial matrices, Linear Algebra Appl. 188 (1993), 569–589.
  • [13] H.H. Rosenbrock, State Space and Multivariable Theory, Wiley-Interscience, New York, 1970.
  • [14] A. Sami Bataineh, M.S.M. Noorani and I. Hashim, Approximate analytical solutions of systems of PDEs by homotopy analysis method, Comput. Math. Appl. 55 (2008), 2913–2923. [WoS]
  • [15] N. Shayanfar and M. Hadizadeh, Splitting a linear system of operator equations with constant coefficients: A matrix polynomial approach, Filomat 27(8) (2013), 1447–1454.
  • [16] N. Shayanfar, M. Hadizadeh and A. Amiraslani, Integral operators acting as variables of the matrix polynomial: application to system of integral equations, Ann. Funct. Anal. 3(2) (2012), 170–182.
  • [17] A.M. Wazwaz, The decomposition method applied to systems of partial diferential equations and to the reaction diffusion Brusselator model, Appl. Math. Comput. 110 (2000), 251–264.
  • [18] J. Wilkening and J. Yu, A local construction of the Smith normal form of a matrix polynomial, J. Symbolic Comput. 46 (2011), 1–22. [WoS]

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.