The nth-order determinant of a Toeplitz-Hessenberg matrix is expressed as a sum over the integer partitions of n. Many combinatorial identities involving integer partitions and multinomial coefficients can be generated using this formula.
Department of Mathematics, University of Craiova, 200585 Craiova, Romania
Bibliografia
[1] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing, 1976.
[2] J. M. Bogoya, A. Böttcher, S. M. Grudsky, Asymptotics of Individual Eigenvalues of a Class of Large Hessenberg Toeplitz Matrices, Oper. Theory Adv. Appl. 220 (2012), 77–95.
[3] J. M. Bogoya, A. Böttcher, S. M. Grudsky, E. A. Maksimenko, Eigenvectors of Hessenberg Toeplitz matrices and a problem by Dai, Geary, and Kadanoff, Linear Algebra Appl. 436 (2012), 3480–3492. [WoS]
[4] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241–259. [Crossref]
[5] X. W. Chang, M. J. Gander, S. Karaa, Asymptotic properties of the QR factorization of banded Hessenberg–Toeplitz matrices. Numer. Linear Algebra Appl. 12 (2005), 659–682.
[6] H. Chen, Bernoulli numbers via determinants, Internat. J. Math. Ed. Sci. Tech. 34 (2003), 291–297. [Crossref]
[7] K.-W. Chen, Inversion of Generating Functions using Determinants, J. Integer Seq. 10 (2007), Article 07.10.5.
[8] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics. Addison-Wesley, New York, 1994.
[9] A. Inselberg, On determinants of Toeplitz-Hessenberg matrices arising in power series, J. Math. Anal. Appl. 63 (1978), 347–353. [Crossref]
[10] A. J. E. M. Janssen, Asymptotics of the Perron-Frobenius eigenvalue of nonnegative Hessenberg-Toeplitz matrices, IEEE Trans. Inf. Theor., 35 (1989), 1340–1344.
[11] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford, 1995.
[12] P. A. MacMahon, Combinatory analysis. Two volumes (bound as one), Chelsea Publishing Co., New York, 1960.
[13] P. Mongelli, Combinatorial interpretations of particular evaluations of complete and elementary symmetric functions, Electron. J. Combin. 19 (2012), paper 12, 23 pp.
[14] T. Muir, The theory of determinants in the historical order of development. Four volumes, Dover Publications, New York, 1960.
[15] R. Van Malderen, Non-recursive expressions for even-index Bernoulli numbers: A remarkable sequence of determinants, arXiv:math/0505437v1, 2005.