PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 11 | 1733-1747
Tytuł artykułu

Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, some superconvergence results of high-degree finite element method are obtained for solving a second order elliptic equation with variable coefficients on the inner locally symmetric mesh with respect to a point x 0 for triangular meshes. By using of the weak estimates and local symmetric technique, we obtain improved discretization errors of O(h p+1 |ln h|2) and O(h p+2 |ln h|2) when p (≥ 3) is odd and p (≥ 4) is even, respectively. Meanwhile, the results show that the combination of the weak estimates and local symmetric technique is also effective for superconvergence analysis of the second order elliptic equation with variable coefficients.
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
11
Strony
1733-1747
Opis fizyczny
Daty
wydano
2014-11-01
online
2014-06-29
Twórcy
autor
autor
autor
Bibliografia
  • [1] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer-Verlag, New York, 1994
  • [2] Ciarlet P. G., The Finite Element Method for Ellptic Problem, North-Holland, Amsterdam, 1978
  • [3] Guan X.F., Li M.X., Chen S.C., Some numerical quadrature schemes of a non-conforming quadrilateral finite element, Acta Math. Appl. Sin., 2012, 28, 117–126 http://dx.doi.org/10.1007/s10255-012-0127-9
  • [4] He W.M., Chen W.Q., Zhu Q.D., Local superconvergence of the derivative for tensor-product block FEM, Numer. Methods Partial Differential Equations, 2012, 28, 457–475 http://dx.doi.org/10.1002/num.20628
  • [5] He W.M., Cui J.Z., The local superconvergence of the linear finite element method for the Poisson problem, Numer. Methods Partial Differential Equations (in press), DOI: 10.1002/num.21842
  • [6] Krasovskiĭ J.P., Isolation of singularities of the Green’s function, Math. USSR Izv., 1967, 1, 935–966 http://dx.doi.org/10.1070/IM1967v001n05ABEH000594
  • [7] Lin Q., Lin J., Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006 (in Chinese)
  • [8] Lin Q., Yan N., Construction and Analysis of Finite Element Methods, Hebei University Press, 1996 (in Chinese)
  • [9] Lin Q., Zhang S., Yan N., An acceleration method for integral equations by using interpolation post-processing, Adv. Comp. Math., 1998, 9, 117–128 http://dx.doi.org/10.1023/A:1018925103993
  • [10] Lin Q., Zhou J., Superconvergence in high-order Galerkin finite element methods, Comput. Method Appl. Mech. Engrg., 2007, 196, 3779–3784 http://dx.doi.org/10.1016/j.cma.2006.10.027
  • [11] Lin Q., Zhu Q., The Preprocessing and Postprocessing for the Finite Element Methods, Scientific and Technical Publishers, Shanghai, 1994 (in Chinese)
  • [12] Mao S.P., Chen S.C., Shi D.Y., Convergence and superconvergence of a nonconforming finite element on anisotropic meshes, Int. J. Numer. Anal. Model., 2007, 4, 16–38
  • [13] Mao S.P., Chen S.C., Sun H., A quadrilateral, anisotropic, superconvergent, nonconforming double set parameter element, Appl. Numer. Math., 2006, 56, 937–961 http://dx.doi.org/10.1016/j.apnum.2005.07.005
  • [14] Mao S.P., Shi Z.-C., High accuracy analysis of two nonconforming plate elements, Numer. Math., 2009, 111, 407–443 http://dx.doi.org/10.1007/s00211-008-0190-6
  • [15] Meng L., Zhu Q., The ultraconvergence of derivative for bicubic finite element, Comput. Method Appl. Mech. Engrg., 2007, 196, 3771–3778 http://dx.doi.org/10.1016/j.cma.2006.10.026
  • [16] Schatz A.H., Sloan I.H., Wahlbin L.B., Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 1996, 33, 505–521 http://dx.doi.org/10.1137/0733027
  • [17] Zhang Z., Ultraconvergence of the patch recovery technique, Math. Comp., 1996, 65, 1431–1437 http://dx.doi.org/10.1090/S0025-5718-96-00782-X
  • [18] Zhang Z., Ultraconvergence of the patch recovery technique(II), Math. Comp., 2000, 69, 141–158 http://dx.doi.org/10.1090/S0025-5718-99-01205-3
  • [19] Zhang Z., Lin R., Ultraconvergence of ZZ patch recovery at mesh symmetry points, Numer. Math., 2003, 95, 781–801 http://dx.doi.org/10.1007/s00211-003-0457-x
  • [20] Zhang Z., Zhu J., Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method(I), Comput. Methods Appl. Mech. Engrg., 1995, 123, 173–187 http://dx.doi.org/10.1016/0045-7825(95)00780-5
  • [21] Zhu Q., Superconvergence and Postprocessing Theory of Finite Element Theory, Science Press, 2008 (in Chinese)
  • [22] Zhu Q., Meng L., The derivative ultraconvergence for quadratic triangular finite elements, J. Comput. Math., 2004, 22, 857–864
  • [23] Zhu Q., Meng L., New construction and ultraconvergence of derivative recovery operator for odd-degree rectangular elements, Sci. China Math., 2004, 47, 940–949 http://dx.doi.org/10.1360/02ys0329
  • [24] Zhu Q., Zhao Q., SPR technique and finite element correction, Numer. Math., 2003, 96, 185–196 http://dx.doi.org/10.1007/s00211-003-0474-9
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-014-0440-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.