PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 11 | 1656-1663
Tytuł artykułu

Functions on adjacent vertex degrees of trees with given degree sequence

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this note we consider a discrete symmetric function f(x, y) where $$f(x,a) + f(y,b) \geqslant f(y,a) + f(x,b) for any x \geqslant y and a \geqslant b,$$ associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as $$\sum\limits_{uv \in E(T)} {f(deg(u),deg(v))} ,$$ are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures for the relatively new sum-connectivity index and harmonic index also follow immediately, some of these extremal structures have not been identified in previous studies.
Słowa kluczowe
EN
Degrees   Function   Index   Trees  
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
11
Strony
1656-1663
Opis fizyczny
Daty
wydano
2014-11-01
online
2014-06-29
Twórcy
autor
Bibliografia
  • [1] D. Cvetković, M. Doob, H. Sachs, A. Torgašev, Recent results in the theory of graph spectra, Annals of Discrete Mathematics Series, North-Holland, 1988.
  • [2] D. Cvetkovic, M. Petric, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37–49. http://dx.doi.org/10.1016/0012-365X(84)90033-5
  • [3] C. Delorme, O. Favaron, D. Rautenbach, On the Randic index, Discrete Math. 257 (2002) 29–38. http://dx.doi.org/10.1016/S0012-365X(02)00256-X
  • [4] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187–197.
  • [5] O. Favaron, M. Mahéo, J.F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti-II), Discrete Math. 111(1993) 197–220. http://dx.doi.org/10.1016/0012-365X(93)90156-N
  • [6] H. Liu, M. Lu, F. Tian, Trees of extremal connectivity index, Discrete Appl. Math. 154(2006) 106–119. http://dx.doi.org/10.1016/j.dam.2004.10.009
  • [7] M. Randic, On characterization of molecular branching, J. Amer. Chem. Soc. 97(1975) 6609–6615. http://dx.doi.org/10.1021/ja00856a001
  • [8] D. Rautenbach, A note on trees of maximum weight and restricted degrees, Discrete Math. 271(2003) 335–342. http://dx.doi.org/10.1016/S0012-365X(03)00135-3
  • [9] N. Schmuck, S. Wagner, H. Wang, Greedy trees, caterpillars, and Wiener-type graph invariants, MATCH Commun. Math.Comput.Chem. 68(2012) 273–292.
  • [10] H. Wang, Extremal trees with given degree sequence for the Randic index, Discrete Math. 308(2008) 3407–3411. http://dx.doi.org/10.1016/j.disc.2007.06.026
  • [11] H. Wang, The extremal values of the Wiener index of a tree with given degree sequence, Discrete Applied Mathematics, 156(2008) 2647–2654. http://dx.doi.org/10.1016/j.dam.2007.11.005
  • [12] H. Wiener, Structural determination of paraffin boiling point, J. Amer. Chem. Soc. 69(1947) 17–20. http://dx.doi.org/10.1021/ja01193a005
  • [13] X.-D. Zhang, Q.-Y. Xiang, L.-Q. Xu, R.-Y. Pan, The Wiener index of trees with given degree sequences, MATCH Commun.Math.Comput.Chem., 60(2008) 623–644.
  • [14] X.-M. Zhang, X.-D. Zhang, D. Gray, H. Wang, The number of subtrees of trees with given degree sequence, J. Graph Theory, 73(2013) 280–295. http://dx.doi.org/10.1002/jgt.21674
  • [15] L. Zhong, The harmonic index for graphs, Applied Math. Letters, 25(2012) 561–566. http://dx.doi.org/10.1016/j.aml.2011.09.059
  • [16] B. Zhou, N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46(2009) 1252–1270. http://dx.doi.org/10.1007/s10910-008-9515-z
  • [17] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47(2010) 210–218. http://dx.doi.org/10.1007/s10910-009-9542-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-014-0439-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.