PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 4 | 611-622
Tytuł artykułu

Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective heat exchange between a body and the environment. The integral transform technique is used. Numerical results are illustrated graphically.
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
4
Strony
611-622
Opis fizyczny
Daty
wydano
2014-04-01
online
2014-01-17
Bibliografia
  • [1] Bazzaev A.K., Shkhanukov-Lafishev M.Kh., Locally one-dimensional scheme for fractional diffusion equations with Robin boundary conditions, Comput. Math. Math. Phys., 2010, 50(7), 1141–1149 http://dx.doi.org/10.1134/S0965542510070031
  • [2] Chen J., Liu F., Anh V., Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 2008, 338(2), 1364–1377 http://dx.doi.org/10.1016/j.jmaa.2007.06.023
  • [3] Debnath L., Bhatta D., Integral Transforms and Their Applications, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007
  • [4] Duan J.-S., Wang Z., Fu S.-Z., Fractional diffusion equation in a half-space with Robin boundary condition, Centr. Eur. J. Phys., 2013, 11(6), 799–805 http://dx.doi.org/10.2478/s11534-013-0206-4
  • [5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of Integral Transforms, I, McGraw-Hill, New York, 1954
  • [6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, III, McGraw-Hill, New York, 1955
  • [7] Galitsyn A.S., Zhukovsky A.N., Integral Transforms and Special Functions in Heat Conduction Problems, Naukova Dumka, Kiev, 1976 (in Russian)
  • [8] Gorenflo R., Luchko Yu., Mainardi F., Analytical properties and applications of the Wright functions, Fract. Calc. Appl. Anal., 1999, 2(4), 383–414
  • [9] Gorenflo R., Mainardi F., Fractional calculus: Integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, 378, Springer, Vienna, 1997, 223–276 http://dx.doi.org/10.1007/978-3-7091-2664-6_5
  • [10] Hanyga A., Multidimensional solutions of time-fractional diffusion-wave equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2002, 458, 933–957 http://dx.doi.org/10.1098/rspa.2001.0904
  • [11] Jiang W., Lin Y., Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16(9), 3639–3645 http://dx.doi.org/10.1016/j.cnsns.2010.12.019
  • [12] Kemppainen J., Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition, Abstr. Appl. Anal., 2011, #321903
  • [13] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204 Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0
  • [14] Luikov A.V., Analytical Heat Diffusion Theory, Academic Press, New York, 1968
  • [15] Mainardi F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Let., 1996, 9(6), 23–28 http://dx.doi.org/10.1016/0893-9659(96)00089-4
  • [16] Mainardi F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 1996, 7(9), 1461–1477 http://dx.doi.org/10.1016/0960-0779(95)00125-5
  • [17] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
  • [18] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 2005, 28(1), 83–102 http://dx.doi.org/10.1080/014957390523741
  • [19] Povstenko Y., Time-fractional radial diffusion in a sphere, Nonlinear Dynam., 2008, 53(1–2), 55–65 http://dx.doi.org/10.1007/s11071-007-9295-1
  • [20] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity, Quart. J. Mech. Appl. Math., 2008, 61(4), 523–547 http://dx.doi.org/10.1093/qjmam/hbn016
  • [21] Povstenko Y.Z., Thermoelasticity which uses fractional heat conduction equation, J. Math. Sci. (N.Y.), 2009, 162(2), 296–305 http://dx.doi.org/10.1007/s10958-009-9636-3
  • [22] Povstenko Y., Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr., 2009, T136, #014017 http://dx.doi.org/10.1088/0031-8949/2009/T136/014017
  • [23] Povstenko Y., Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fract. Calc. Appl. Anal., 2011, 14(3), 418–435
  • [24] Povstenko Y.Z., Axisymmetric solutions to time-fractional heat conduction equation in a half-space under Robin boundary conditions, Int. J. Differ. Equ., 2012, #154085
  • [25] Povstenko Y., Different kinds of boundary condition for time-fractional heat conduction equation, In: 13th International Carpathian Control Conference, May 28–31, 2012, High Tatras, IEEE, 2012, Košice, 588–591
  • [26] Povstenko Y.Z., Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere, Nonlinear Anal. Real World Appl., 2012, 13(3), 1229–1238 http://dx.doi.org/10.1016/j.nonrwa.2011.10.001
  • [27] Povstenko Y.Z., Fractional heat conduction in infinite one-dimensional composite medium, J. Thermal Stresses, 2013, 36(4), 351–363 http://dx.doi.org/10.1080/01495739.2013.770693
  • [28] Povstenko Y.Z., Fundamental solutions to Robin boundary-value problems for the time-fractional heat-conduction equation in a half line, J. Math. Sci. (N.Y.), 2013, 194(3), 322–329 http://dx.doi.org/10.1007/s10958-013-1531-2
  • [29] Povstenko Y., Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition, Fract. Calc. Appl. Anal., 2013, 16(2), 354–369
  • [30] Samko S.G, Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993
  • [31] Sandev T., Tomovski Ž., The general time fractional wave equation for a vibrating string, J. Phys. A, Math. Theor., 2010, 43(5), #055204 http://dx.doi.org/10.1088/1751-8113/43/5/055204
  • [32] Schneider W.R., Wyss W., Fractional diffusion and wave equations, J. Math. Phys., 1989, 30(1), 134–144 http://dx.doi.org/10.1063/1.528578
  • [33] Tomovski Ž., Sandev T., Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions, Nonlinear Dynam., 2013, 71(4), 671–683 http://dx.doi.org/10.1007/s11071-012-0710-x
  • [34] Wyss W., The fractional diffusion equation, J. Math. Phys., 1986, 27(11), 2782–2785 http://dx.doi.org/10.1063/1.527251
  • [35] Zacher R., Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, Differential Integral Equations, 2006, 19(10), 1129–1156
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0368-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.