PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 2 | 330-336
Tytuł artykułu

On the cardinality of n-Urysohn and n-Hausdorff spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two variations of Arhangelskii’s inequality $$\left| X \right| \leqslant 2^{\chi (X) - L(X)}$$ for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
2
Strony
330-336
Opis fizyczny
Daty
wydano
2014-02-01
online
2013-11-21
Twórcy
Bibliografia
  • [1] Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)
  • [2] Arhangel’skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 1995, 36(2), 303–325
  • [3] Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull., 1988, 31(2), 153–158 http://dx.doi.org/10.4153/CMB-1988-023-4
  • [4] Bonanzinga M., On the Hausdorff number of a topological space, Houston J. Math., 2013, 39(3), 1013–1030
  • [5] Bonanzinga M., Cammaroto F., Matveev M.V., On a weaker form of countable compactness, Quaest. Math., 2007, 30(4), 407–415 http://dx.doi.org/10.2989/16073600709486209
  • [6] Bonanzinga M., Cammaroto F., Matveev M., On the Urysohn number of a topological space, Quaest. Math., 2011, 34(4), 441–446 http://dx.doi.org/10.2989/16073606.2011.640456
  • [7] Bonanzinga M., Cammaroto F., Matveev M., Pansera B., On weaker forms of separability, Quaest. Math., 2008, 31(4), 387–395 http://dx.doi.org/10.2989/QM.2008.31.4.7.611
  • [8] Bonanzinga M., Pansera B., On the Urysohn number of a topological space II, Quaest. Math. (in press)
  • [9] Carlson N., The weak Lindelöf degree and homogeneity (manuscript)
  • [10] Carlson N.A., Porter J.R., Ridderbos G.J., On cardinality bounds for homogeneous spaces and G κ-modification of a space, Topology Appl., 2012, 159(13), 2932–2941 http://dx.doi.org/10.1016/j.topol.2012.05.004
  • [11] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
  • [12] Gryzlov A.A., Stavrova D.N., Topological spaces with a selected subset - cardinal invariants and inequalities, C. R. Acad. Bulgare Sci., 1993, 46(7), 17–19
  • [13] Hodel R.E., Cardinal functions I, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 1–61
  • [14] Hodel R.E., Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc., 1991, 111(2), 567–575 http://dx.doi.org/10.1090/S0002-9939-1991-1039531-7
  • [15] Hodel R.E., Arhangel’skiĭ’s solution to Alexandroff’s problem: A survey, Topology Appl., 2006, 153(13), 2199–2217 http://dx.doi.org/10.1016/j.topol.2005.04.011
  • [16] Ramírez-Páramo A., Tapia-Bonilla N.T., A generalization of a generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 2007, 48(1), 177–187
  • [17] Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343
  • [18] Veličko N.V., H-closed topological spaces, Mat. Sb. (N.S.), 1966, 70(112)(1), 98–112 (in Russian)
  • [19] Willard S., Dissanayeke U.N.B., The almost Lindelöf degree, Canad. Math. Bull., 1984, 27(4), 452–455 http://dx.doi.org/10.4153/CMB-1984-070-2
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0339-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.