PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 1 | 14-27
Tytuł artykułu

The Mukai conjecture for log Fano manifolds

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
1
Strony
14-27
Opis fizyczny
Daty
wydano
2014-01-01
online
2013-10-30
Twórcy
autor
Bibliografia
  • [1] Andreatta M., Chierici E., Occhetta G., Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math., 2004, 2(2), 272–293 http://dx.doi.org/10.2478/BF02476544
  • [2] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3
  • [3] Bonavero L., Casagrande C., Debarre O., Druel S., Sur une conjecture de Mukai, Comment. Math. Helv., 2003, 78(3), 601–626 http://dx.doi.org/10.1007/s00014-003-0765-x
  • [4] Casagrande C., On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J., 2009, 58(3), 783–805 http://dx.doi.org/10.1307/mmj/1260475701
  • [5] Casagrande C., On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér., 2012, 45(3), 363–403
  • [6] Fujino O., Introduction to the log minimal model program for log canonical pairs, preprint available at http://arxiv.org/abs/0907.1506/
  • [7] Fujita K., Simple normal crossing Fano varieties and log Fano manifolds, preprint available at http://arxiv.org/abs/1206.1994/
  • [8] Fujita T., On polarized manifolds whose adjoint bundles are not semipositive, In: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 167–178
  • [9] Hu Y., Keel S., Mori dream spaces and GIT, Michigan Math. J., 2000, 48, 331–348 http://dx.doi.org/10.1307/mmj/1030132722
  • [10] Ishii S., Quasi-Gorenstein Fano 3-folds with isolated nonrational loci, Compositio Math., 1981, 77(3), 335–341
  • [11] Kollár J., Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb., 32, Springer, Berlin, 1996 http://dx.doi.org/10.1007/978-3-662-03276-3
  • [12] Kollár J., Miyaoka Y., Mori S., Rational connectedness and boundedness of Fano manifolds, J. Differential Geom., 1992, 36(3), 765–779
  • [13] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 http://dx.doi.org/10.1017/CBO9780511662560
  • [14] Maeda H., Classification of logarithmic Fano threefolds, Compositio Math., 1986, 57(1), 81–125
  • [15] Mori S., Mukai S., Classification of Fano 3-folds with B 2 ≥ 2, Manuscr. Math., 1981, 36(2), 147–162, Erratum: Manuscr. Math., 2003, 110(3), 407 http://dx.doi.org/10.1007/BF01170131
  • [16] Mukai S., Problems on characterization of the complex projective space, In: Birational Geometry of Algebraic Varieties, Open Problems, Katata, August 22–27, 1988, 57–60
  • [17] Novelli C., Occhetta G., Rational curves and bounds on the Picard number of Fano manifolds, Geom. Dedicata, 2010, 147, 207–217 http://dx.doi.org/10.1007/s10711-009-9452-4
  • [18] Wiśniewski J.A., On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., 1991, 417, 141–157
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0326-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.