We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.
[1] Abramovich D., Wang J., Equivariant resolution of singularities in characteristic 0, Math. Res. Lett., 1997, 4(2–3), 427–433 http://dx.doi.org/10.4310/MRL.1997.v4.n3.a11
[2] Artin M., Mumford D., Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., 1972, 25(1), 75–95 http://dx.doi.org/10.1112/plms/s3-25.1.75
[3] Bayle L., Beauville A., Birational involutions of P 2, Asian J. Math., 2000, 4(1), 11–17
[4] Beauville A., Blanc J., On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris, 2004, 339(4), 257–259 http://dx.doi.org/10.1016/j.crma.2004.06.015
[5] Beauville A., Colliot-Thélène J.-L., Sansuc J.-J., Swinnerton-Dyer P., Variétés stablement rationnelles non rationnelles, Ann. of Math., 1985, 121(2), 283–318 http://dx.doi.org/10.2307/1971174
[6] Colliot-Thélène J.-L., Sansuc J.-J., La descente sur les variétés rationnelles. II, Duke Math. J., 1987, 54(2), 375–492 http://dx.doi.org/10.1215/S0012-7094-87-05420-2
[7] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Boston, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11
[8] de Fernex T., On planar Cremona maps of prime order, Nagoya Math. J., 2004, 174, 1–28
[9] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 (in Russian) http://dx.doi.org/10.1070/IM1980v014n01ABEH001064