Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 12 | 2099-2105

Tytuł artykułu

On stable conjugacy of finite subgroups of the plane Cremona group, I

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

11

Numer

12

Strony

2099-2105

Daty

wydano
2013-12-01
online
2013-10-08

Bibliografia

  • [1] Abramovich D., Wang J., Equivariant resolution of singularities in characteristic 0, Math. Res. Lett., 1997, 4(2–3), 427–433 http://dx.doi.org/10.4310/MRL.1997.v4.n3.a11
  • [2] Artin M., Mumford D., Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., 1972, 25(1), 75–95 http://dx.doi.org/10.1112/plms/s3-25.1.75
  • [3] Bayle L., Beauville A., Birational involutions of P 2, Asian J. Math., 2000, 4(1), 11–17
  • [4] Beauville A., Blanc J., On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris, 2004, 339(4), 257–259 http://dx.doi.org/10.1016/j.crma.2004.06.015
  • [5] Beauville A., Colliot-Thélène J.-L., Sansuc J.-J., Swinnerton-Dyer P., Variétés stablement rationnelles non rationnelles, Ann. of Math., 1985, 121(2), 283–318 http://dx.doi.org/10.2307/1971174
  • [6] Colliot-Thélène J.-L., Sansuc J.-J., La descente sur les variétés rationnelles. II, Duke Math. J., 1987, 54(2), 375–492 http://dx.doi.org/10.1215/S0012-7094-87-05420-2
  • [7] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Boston, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11
  • [8] de Fernex T., On planar Cremona maps of prime order, Nagoya Math. J., 2004, 174, 1–28
  • [9] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 (in Russian) http://dx.doi.org/10.1070/IM1980v014n01ABEH001064
  • [10] Lemire N., Popov V.L., Reichstein Z., Cayley groups, J. Amer. Math. Soc., 2006, 19(4), 921–967 http://dx.doi.org/10.1090/S0894-0347-06-00522-4
  • [11] Manin Ju.I., Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math., 1966, 30, 55–97 (in Russian) http://dx.doi.org/10.1007/BF02684356
  • [12] Moret-Bailly L., Variétés stablement rationnelles non rationnelles (d’après Beauville, Colliot-Thélène, Sansuc et Swinnerton-Dyer), In: Seminar Bourbaki, 1984/85, Astérisque, 1986, 133–134, 223–236
  • [13] Popov V.L., Some subgroups of the Cremona groups, In: Affine Algebraic Geometry, Osaka, 3–6 March, 2011, World Scientific, Singapore, 2013, 213–242
  • [14] Serre J.-P., Cohomologie Galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, Springer, Berlin, 1962/1963
  • [15] Voskresenskiĭ V.E., Algebraic Tori, Nauka, Moscow, 1977 (in Russian)

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-013-0314-9